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SUMMARY 

A variational developnent of the governing equations and boundary condi- 

tions for the bending and buckling of sandwich curved plates and shells 

is presented.  The theory is applicable to sandwich construction of the 

honeycomb type and may be used to describe bending, buckling, and post- 

buckling behavior. With the coupled effects of core transverse shear 

and normal strain included, the theory reflects the presence of 8 degrees 

of freedom and 2 constraining conditions.  Nine boundary conditions per 

curved plate or shell edge can be specified; apart from the four of the 

usual type for each of the sandwich facing elements, in terms of either 

a generalized force or displacement, a condition for either the shear 

loading or the average displacement of the core is obtained. The gov- 

erning equations, specialized for small-displacement buckling, are applied 

to the case of axial compression of circular cylindrical shells.  The 

unified theory analysis reflects three modes of buckling:  classical 

general instability and both symmetric and antisymmetric wrinkling. 

Comparison of the results with published experimental data for honeycomb- 

core sandwich shells of practical dimensions yields very strong evidence 

to suggest that the axial compression buckling load and failure mode of 

such shells, unlike homogeneous, isotropic shells, are given in good ap- 

proximation by a linear theory. 
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FOREWORD 

The work reported herein constitutes  a portion of a continuing ef- 

fort being undertaken at Stanford  University for the U.S.   Army 

Aviation Materiel Laboratories under Contract DA 1^-17T-AMC-115(T) 

(Task  1F16220^A17002)  to establish  accurate  theoretical prediction 

capability for  the static  and dynamic behavior of aircraft  structural 

components  using both conventional  and unconventional materials.     A 

predecessor  contract supported  investigations which  led,   in part,   to 

the results presented  in References 2 and k. 

'Redesignated Eustis Directorate,   U.S.   Army Air Mobility Research 
and Development Laboratory. 
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INTRODUCTION 

Although substantial interest in sandwich construction for aeronautical 

applications was evidenced during and just subsequent to World War II, 

it has been only in the last few years that the inherent potential of 

composite construction, in general, has been truly appreciated. The 

continual striving for lightweight structures with higher strength and 

stiffness has caused significant interest in composites for aerospace 

structures applications and, as a result, has led to renewed interest 

in the sandwich type of composite. More and more aerospace designs are 

reflecting the usage of sandwich construction in primary structural 

members as fabrication and prediction capabilities improve. 

As is usually the case in aerospace developments, engineering achieve- 

ments outstrip theoretical prediction of performance.  Thus, to avoid 

costly experimental design and conservative analysis techniques and to 

realize the potential of composite structures in competition with con- 

ventional metal structures, theory and practice must be made concurrent. 

Unfortunately, the price to be paid for achieving more optimum structures 

is complexity.  Since the inherent complexity manifests itself in the 

fabrication, testing, and analysis of sandwich construction, each of 

the areas must receive comparable attention and the problems must be 

attacked directly rather than accommodated by the introduction of con- 

servative practices.  The status of the design criteria for stiffened 

metal shells attests to the penalties incurred by the absence of a 

satisfactory theoretical solution of the problem, even though the 

fabrication and testing of such shells is very well in hand. 

A perusal of Reference 1, a very extensive study of the history and 

state of the art in the establishment of sandwich construction design 

criteria through 1965, indicates that the various stress, deflection, 

and stability analyses of sandwich beams, plates, and shells are of a 

discrete, rather than a unified, nature and are somewhat limited in 

scope.  For example, no single analysis is referred to which is 



sufficiently general to predict simultaneously both general instability 

and face wrinkling of sandwich plates or shells. 

Since the compilation of the material presented in Reference 1, unified 

studies have been completed. References 2 and 5j which are independent 

ind different approaches to the same basic problem, deal with sandwich 

plates in which both transverse shear and normal strain effects are in- 

cluded.  In the former, a variational approach is utilized and both gov- 

erning equations and consistent boundary conditions for prescribing 

either forces or displacements are presented.  Applications are made 

to the stability in axial compression of two types of edge-supported 

sandwich plates in References 2 and h.     In Reference 5, governing 

equations are presented for sandwich plates with dissimilar faces 

based on equilibrium and continuity conditions developed in Refer- 

ence 5; force boundary conditions, established in Reference 5 through 

virtual work considerations, are listed.  An application to buckling 

in axial compression and bending of sandwich columns with dissimilar 

faces results in obviously incorrect design curves.  In addition, for 

application to plates (all edges supported), the buckling equations 

are not consistent with the number of boundary conditions prescribed. 

Wempner et al., in References 5 and 6, treat the problem of sandwich 

shells, the first being a general theory and the second a specializa- 

tion of the general theory to thi> specific problem of a thin cylindrical 

shell undergoing moderately large deflections.  However, when the buck- 

ling of shells is treated, assumptions are invoked in References 5 and 

6 which render the buckling equations unusable for studying all the 

wrinkling modes of instability. Also, in Reference 5, the core- 

constitutive equations are unduly complex relative to the core model 

employed.  In connection with the work of Wempner et al., it must be 

remarked that, despite earlier presentation, its very late availability 

in the general literature (I965) made the theoretical development of 

Reference 5 (the foundation of Reference 3) unknown to the authors 

during the development of the present theory. 



The  present  study has  been undertaken  (1)  as  a  logical  extension  to 

curved plates  and  shells  of   the unified  theory of Reference 2,   (2)   to 

present a set of governing equations,   together with consistent  fore* 

or  displacement boundary conditions,   for  the buckling  and bending of 

curved sandwich plates and shells,  and (5)  to correlate the theoretical 

predictions  for  the buckling of honeycomb-core  sandwich shells  in axial 

compression with  test  data available  in the  literature. 

In connection with  item  (l),   the  theory of Reference 2  is obtained  as 

a special case when both initial-curvature and moderately large-rotation 

effects are omitted. 

Relative to item (2),   the development and form of the governing equations 

and boundary conditions of  the present theory are much less complex than 

those of References 5  and 5 due to the notatioi.,   structural models,   and 

method utilized. 

With regard to item (3),   there is strong evidence  to suggest that  the 

axial compression buckling  load of a sandwich shell of practical con- 

struction and dimensions,  unlike the homogeneous,   isotropic shell,   is 

given in good approximation by the linear theory.     The discrepancies 

that occur may be as much a function of the changes  in honeycomb-core 

properties present at  the instant of buckling as  they are a function 

of  initial  imperfections  in the geometry of the  shell.     Thus,  a more 

complete investigation of the problem suggests consideration of the 

discrete behavior of  the honeycomb cells  rather  than  the current pro- 

cedure of treating  the honeycomb core as  a continuum. 



THEORY 

GENERAL CONSIDERATIONS 

The basic approach taken in this study is to establish equilibrium 

equations and consistent boundary conditions with the aid of vari- 

ational procedures. The equilibrium and boundary condition equations 

for the core and faces (Figure 1) are derived variationally from the 

condition for a stationary character of the separate total potentials 

for the face layers and the core layer.  The equilibrium equations for 

the core, applicable in the core volume, can be integrated through the 

thickness of the core.  Then, by enforcing continuity of displacements 

at the interfaces between the core layer and the face layers, a final 

set of governing equations and consistent boundary conditions is ob- 

tained in only two surface coordinates, comparable to the usual two- 

dimensional formulation associated with thin shell theory. 

FACE CONSIDERATIONS 

The face layers are treated as thin, Isotropie shells on the basis of 

the Kirchhoff-Love assumptions.  Rotations about the normal to the 

middle surface are neglected with respect to rotations about direc- 

tions tangent to the middle surface. 

The middle surface strain displacement relations and the curvature 

changes are (Reference 7) 
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where 

1 u 
üü.    =    ~ w ,     - —        and 

1 ai    '^1      pl 
ü). w 

v 
r2     ^2       P2 

As observed  in Appendix I,   the strain energy of a linearly elastic iso- 

tropic medium for which the Kirchhoff-Love approximations are valid is 

\-ff\H' 2 l'V    2 + G2 + 2V ele2 + Y 712 
), 

D. 
2        2 2 

Kj   +  Kg   +  2V  K^g   +   2(l-v)   Kl2 (a^)   d^dlg   (5) 

where 

Et 

1-V 
D. 

Et' 

12(lV) 

and    i    takes on the values     1    and    2    for the upper and  lower faces, 

respectively. 

For the edge loads  (Figure 2)    N    ,  N    ,  N    , M    ,   and    M        ;   the v s'nzn ns 
lateral surface load    p     ;   and the  interface loads    q..   ,   q_  ,  and    q,   , 
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the potential of applied loads for one of the faces is 

+ NW + Müü - M CO 
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ÖS [[ 

//{[ql (^^ll^pHl-o) 

a d^ 

+ (q, - p) w OiM 
J 12 

d^d^ (h) 

where the upper sign applies to face 1 (i = 1), and the lower sign 

applies to face 2 (i = 2). 

Application of the minimum total potential energy principle requires 

that 

Uf + Vf s 0 (5) 
J i 

The actual variation is carried out in Appendix  I.    The resulting Euler 

equations of equilibrium are 
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The  boundary conditions  consistent with  the equilibrium equations  are 
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P2                                   ' Pn         T 

or        5d   .    =    0 m 
(7b) 

I 1"v ) ( 1"v 1 jC(c1  + vc2) ^  + C — ^ov. j c21  + jC(e2 + vcj)  ^  + C — 7lA jc11 

a 
'll     D^l  + ^2^  C21 + D(1_v) ^12° lli 

+ d12 JD(<2  + V<1)  c11  + D(l-v)  *12
c
21 

>K 
(Cont'd) 
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ai0L2 
\a2 D(K1  +VK?) \,t.l 

D(K? + VKJ) a?)fi 

|ai  D(1-V)K1? j^       +D(l-v)  KlA^ ■21 

aia2 
lai D^? ^-^i) j,f? " D(K

I 
+V^)ai,t 

+ ja2D(l-v) ^IP},^ 
+D(l-v) ^^^ 11 

t 
+ - 

? 
V?i + Vn N    + — M       . 

z ns, 5 a 's 
s 

=     0 

or        6w.     =     0 
i 

(7c) 

D^l   + VKg)   c?1  + D(l-v)  '<12c11     d21 

+JD(<2+VK1)   C11  +D(1-V)  -1?c21jd22  +Mn 0 

or   &w. ,  =  0 (7d) 

where c  , c  , d.. , dlp , etc., are transformation symbols utilized 

to express the boundary conditions in terms of generalized displacement 

components corresponding to a curvilinear coordinate system along and 

normal to the edge of the shell. 

CORE CONSIDERATIONS 

The core description utilized herein is representative of that associated 

with honeycomb-sandwich construction. For such a core, it is reasonable 

11 



to asBtime  that: 

1.     The   inplane  shear and cxtcnsional   stiffnesses arc  negligible 

with  respect  to transverse stiffness  quantities,   correspondinp 

to a state of stress  in which    ^i   =  "V, :   T
1p = ü    • 

?.     In view of  item 1,   it  is  Justifiable  to linearize  the  rele- 

vant  strain-displacement  relations   for the core. 

5.     The  transverse stiffnesses per cell  are constant  through  the 

thickness. 

The first assumption  is obvious  in the case of  a    ree core of cellular 

structure.     When  the core  is supported by  faceplates,   the assumption 

is reasonable  for  thick cores    (c > a)    and  for laterally loaded  sand- 

wich panels with relatively low inplane  loads.    However,   for very  thin 

panels  (for example,     c < - )   loaded  in  the plane of the structure, 

the assumption may need reconsideration,  especially when face-wrinkling 

phenomena are being  studied. 

An element of  the  sandwich shell under consideration is  shown  In Fig- 

ure 1.     Tht middle surface of the undeformed core    (r   = 0)    Is utilized 

as the reference surface of the shell.     Orthogonal curvilinear coor- 

dinates     |.     and     |p    are taken along the curvature directions.     The 

principal  radii of curvature are positive as  shown in the  figure.     The 

coordinate    f     Is measured normal  to the    l-ilp    surface. 

On the basis of  the core model,   the relevant constitutive equations  for 

the resulting antlplane state of stress  are 

T3   =   F(rj c5   ;   T13   =   GjCO 713   ;   T?5   =   G2(C) 725        (8) 

In Equation  (8),   the stiffness  functions  for a curved element are ap- 

propriately designated as 

F(C)    =    F     —  (Cont'd) 
atjCO a2(0 

I? 



G^)    =    G 
QL 

1   v2&) 

G2(U    =    G2 

a. 

^(U 
(9: 

where   a.   , a    ,  F ,   G.   ,   and    C      are the values of these quantities 

when    ^ = 0    . 

The linearized strain displacement relations are 

713    =   u^ 
_u_ _1_ 
a^l,^ +a1 

w,l1 

^23   =   V,C 'a2
a2.i +^w,l2 

(10a) 

(10b) 

e3    =    W^ 

With the use of Equations   (8) and  (10),   it is  shown in Appendix II that 

the strain energy of the core is 

üc = ///[iF^) e|+ 2 Gi(^ As+1G2^ y% «iV6!^   (11; 

For the edge load    q      and the Interface load system with components 

q,   ,   q^ ,  and    q,     (Figure 2),   the potential of applied loads Is 

c/2 

V jjY^\n + V + q3w^ ala2 
^-(c/2) 

d^d^ 

c/2 

// 
ÖS     -(c/2) 

q VO!sd68d? (12) 
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When  the minimum total potential energy  principle  is  applied   to  the 

core  in  the  form 

U    + V c        c =    0 (13) 

the equilibrium equations and W mdary  conditions are obtained  as  shown 

in Appendix  II.     The equilibrium equations  are 

a. 

al 

(Ihi 

^t^.r.   "   0 d^b; 

w'tt +^T(^G]7l5)'^i + ^^'h 
ilhc) 

The boundary conditions consistent with  these equilibrium equations are 

a2 (15a) 

a 

o; ul 

(15b) 

F
aia? F   w u (15c) 

a a 
Gl 7 ?13a2dh + G2 - ?2laldh q a d| 

^ s s 
or  5w = 0   (I5d) 

INTERFACE CONTINUITY CONSIDERATIONS 

At the present point, the governing equations and boundary conditions 

have been derived for the core and faces considered as separate media. 

Ih 



In order to ensure continuity of deformation in the composite sandwich 

shell, the components of the core and face displacements must satisfy 

the conditions 

udpl^l) =  (u + - u^) 

ua^-f)    (u -|aO 
(16a) 

c t 
v(lpl2,p) =  (v + g a)?)^ 

v(t1,t>2,-p   =    (v - - cu2) 
(16b) 

W^1^P^) = wi 

(16c) 

As demonstrated in Appendix II, the satisfaction of conditions (l6a,b, 

and c) subsequent to integration of the core strain-displacement equa- 

tions gives rise  to  the  two  interface compatibility equations 

Ul\l  1 -  Up I 1  +  I + ~ wl  f 
?P1I    

c\     2P1!   ^   ''h 

c   f   t1 c      + J>t-C 

2 6p. 

a1   ^
5: 

c  + t2      c    + Jt^c 
  +   

6p 1 

/jC 

12 Fa 

G 

^   i.   } Z 
aia2 l     a a2     ■l ^ '52 

o     (17) 

..^ 
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and 

v'(l-i)-v41+iHw^ 
c + t   c  + 3t-c 

6p, 

+ — w? f 

a2 ^'5? 

c + t?  c  + 3t2c 
  +  — 

6P, 
' ^c 

12 Fa, aiap lc\ ,t 
(Iß) 

As is also shown in Appendix II, additional results stemming from the 

integration of the core equations permit the interface loads q.   ,  q^ , 

and  q..  and the boundary conditions for the edge of the core to be 

expressed in terms of the face displacement components u. , v. , and 

w.  and the core shear angles y.    and yp    . 

GOVERNING EQUATIONS AND BOUNDARY CONDITIONS 

With terms usually eliminated from shallow-shell theory denoted by an 

asterisk, the final set of governing equations describing the behavior 

of the sandwich shell is 

K c(ci+^ l ^ - c(e2+^ ^+}ai c~ '^l 
>l< 

1-v 
+ c y   a 

2       ld  L'l2 
a2 D(K1 + v/<2) 

»61 

-D^vK^a^. jaiD(l-v)K12^ 

+D(1-v)K12ai,5? 

T aia2Gl^l   ( 
1 T c 

2P1P2 

-     0 (19a) 
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1-v 
k C(c0 + VC,) ! e  - C(r1 + vr,) a^^ 

+ [ a? 
C ^ ^2 | 6 

| 1   2    ! ) '-■?     ' c   ''^  ( "   2 

1-V 1 
+ c — 71?a2 . - - 

2  ^ e'6l  P, 
Oj D(K2 + VKJ) I 

Li. 

-DCKJ + vK2)a1#, +}a2D(l.v)K12j 
1,1, 

+ Dd-V) *1202>|i 

=F a1a2G272 11 ^ c 
(' 

P2 + 2p 

2P1P2 ^ 
=  0 (19b) 

la. 
ja2 D(K1 + VK2)  j>6i - D(.2 + v^) 

a(
2,51 ^«i ^^v) <12 {^ 

+ D(l-v)K12a1>|2 
M, 

+ i- a. 
[C*! D(<2 + VKj) j ^ 

D(K1+vK2)a1^2 + [a2D(l-v)K12j^ 

+ D(l-v)K12a2^i 

»^ 

+ ala2 cCcj + ve2; t-) (Cont'd) 
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/I v 1-v 
C(c?+vc1)(--K2)-?C — X1?K1? 

T  p +  F 

2P1P? 

( wi - ws 
^      ^r2 

c    v      G 

2 \       3P„I  Fa,a^ ,s2' ." ^       5P2 /  Fa^ 

t 

2 
|a2Gl^l ( 

1 ^  c 
Pi + 2P2 \ ) 

2P,P„      ' M, 

'iV. I1 
" i alG27y 11 ^ c 

'   12^ 2P1P2      M,|2 

2P1 + P2 \ I 
I 

= 0 (19c) 

The boundary conditions in final form, which permit either generalized 

forces or displacements to be prescribed, are 

1-V D * D *   ) 
:(,:1  +V>?)  C21 + C~ 712C11  "~ (1-V) ^^ll   -~  (/<l+VK2)c21)Cll 

1-V 

? 
+ jC(c2 + v J ^i + C — y12c21 >  - (1-v) <12c21 

D                              „    j M*      M* 
/                  \     *    ( .XT          n   .     ns -   - (K^VKJ) clljc21 + Ns .- + — 

p2                                   ' T         Ps 

0 

or bd   .     =    0 
si 

(20a) 
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I 1-V D , D #    | 
.€(■,  + v^)  CP1  -C— r^cjj  -- (l-v; .l?cn  -- (^^V^-p)^     c1? 

I ? P, P, I 

1 l-V D * 
+ /C('? + V,1)   Cll  +C — ^?C21   "-  (1-V)K1?C?1 

« « 
D I MM 
- (K2 + VKJ)  cj      c?? + Nn -- + — 
P? Pn T 

=    0 

or        7)d   .     ^    0 ni (20b) 

1-V 1 1"V I 1 l*V I 
fC(. ! * VC2) o.j  + C -—  ,1?^ 1 c?1   + jCCCg  + vCj)  aJ?  + —  y^cuj j CJJ 

a 
dll |D(K1  +VK2)  C^l + D(1_v) Kl2Cllj 

+ d12[D(<2 + vK1)   CU   + DCI-V)  K12C21 j 

ala? 
|a?D(Kl +V^)j,51 ■D(^ + ^l)a2,| 

+   a   D(l-v) ^? + D(l-v) ^0a 
|    1 1     ),l2 

l2  1,52 "21 

1 

aia? 

I^DC^ + VK^J ^     -DCKJ +VK2)a1>e 

^P^-^iPpe/^-^^ij ii (Cont'd) 
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t 
+ - 

2 
;1'1 (: 

'1H2 
)C21 + V2(: 

P
2 + 2P1 

2p,p0  / \      2p,p0 

1 
N + — M  t 
z  a  n8^8 

8 

0   or   6w.  = 0 (20c) 

DCKj + VK2) c21 + D(l-v) <l2cll    d21 

^DC^ + VK^ CJJ + D(l-v) K12c21 d22 + Mn 0 

or   5W1 e  =0 
l>§n 

(20d) 

[VlC21 + V2C11 + ^] =  0 or 

6 w (l j+„(l+   ]+_  —1- (ay). 
I 1 V  5P8/  

2^   3P8/ 6F (a^  2 1 'h 

afa      1 ^ ^2 
(20e) 

The governing equations and boundary conditions given by Equations (17), 

(18), (19), and (20) are sufficient to determine the bending, buckling, 

and postbuckling behavior of sandwich shells under prescribed loads and 

boundary conditions. 

Special forms and an application of these equations are treated in sec- 

tions tc follow. 
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Shallow Shell Equations 

In many instances, the contribution of inplane displacements to the 

rotations m  and a)p of the face layer is small.  Especially in 

the case of shallow-sandwich shells and shallow regions of nonshallow 

shells, the expressions for the rotations can be simplified to give 

(21) 

If these rotation expressions are utilized, then terms marked by an 

asterisk have to be omitted from the governing equations and boundary 

conditions.  In such a case, the equations for the faceplates are es- 

sentially those commonly referred to as the von Karman-Donne11 type. 

Thin Shell Equations 

In cases where the total shell thickness  (c -f t. + t )  is negligible 

with respect to each of the principal radii of curvature (p^p^) , 

terms of the order (c + t. + tp)/p or, in view of the Kirchhoff-Love 

assumption (t/p) «1 , of the order c/p can be neglected with re- 

spect to unity. As a further consequence, the differences in the metric 

components (a. ,00 and the radii of curvature (p..,Pp) of the two 

face layers must be neglected.  With these simplifications, the gov- 

erning shallow-shell equations and boundary conditions of the previous 

section reduce to 

11          I           (  1-V    I 
a  C(e + vep)      -<C(e +ve1)}  a . + a, {C  y     \ 

' '   i    ^ ) i ,51  (  e i ) i  ' 1     (   2   ^ ) i , 2 

l-v   I 

2 
+ ic —^isj^M^iWi = 0   (22a) 
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^K^L,, -K^^l^i,!^^!^^] 
(    l-v 

+ JC   y 
(        2 

)i   ,\ 

12 1^2,1^^2^2    =    0 ^2b) 

.a. 
,a2 D^j+VKg) 

i   ^1 
D(K2+vK1)jia2^i+ja1D(l-v)K12ji 

^-^^(^l,^ 

a. 
ttj  D(K2  + VK1) 

^1 

i    ,1, 

0(^1 + VK )     a 

a2 D(l-v) /<12 
1   ^ 

D(I-V) K        a 

JM2 

+ a^ jc(c1 + ve2) (~ - K^ 

/ 1 . l-v ) 
+  C(C2+VG 

± aia2 - (w1 - w2) 

ti + c j 
    G (a/  ) 

2       (    1    ^  1  'gl 

+ G2^2),| J    =     0 (22c) 
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!      c_,c.,   + |l 
1-v 

(C(e].  +Ve2\i 
C21C11  + iC V7l2ti   (Cl1   '   C?1 (cn + c2i) 

+    C(G2 + vej)        c11c21 + Ngi    =    0      or    5d8i = 0        (25a) 

) {     1'V ) :(f-l  + ^H .   C21C12 +    C ~ 712 L   (C11C12 + C21C22) 

+    C(c2 + Ve) c11c22 + Nni    =    0      or    5dnl =  0        (25b) 
I i 

1 1-V I 

( 1"V I 
+  W^ + vc^^ + C—-7lAjiC11 

1 
— {d 
a s 

11 
XKJ H-VK^j^ c21+JD(l-v) K^^ c11 

+ d 12 p('<2 + V'<1) j      c11 +    D(l-v) K12        c2l 

>*. 

"21 

aia2 

:a2 D(/c1 + VK2) 

i   ^1 

D(K2 + vKj) 
(i^H 

+ {a1D(l.v)K12ji   ^   +JD(l.v)K12jia1^2 

11 

a1a2 

a. D(K    + VK, ) -   D(/<    + v/<?)       a    . 
! 1    2      1 ) i ,5.   (    1      2 ) i  ^^ 

(Cont'd) 
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+ a D(l-v) K       + D(l-v) K    a 

G1^1C21 + V2C11 N . + — M  . .  = 0 zl  a  n8i,58 
s 

or   Sw. = 0 (25c) 

{^i ^^^^i + jD(1-v)'<i2(1 
cnJ 21 

) 
:D(K2+VK1)jiC11+JD(l-v)K12ji C21j 22 

+ M , = 0   or   5w. .  = 0 ni i,ln 
(23d) 

—* 
C lVlC2l + SVll^ = 0   or 

"^''^i^l^Vi'.s/VV^sJ = 0 (23e) 

These equations for the sandwich configuration in which F -><» are 

those of Reference 8.  Further, if the bending stiffness of the faces 

is neglected (membrane faces), then the equations represent the gen- 

eral form of the classical theory for sandwich shells of Reference Q« 
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APPLICATION TO COMPRESSIVE BUCKLING OF THIN CIRCULAR CYLINDERS 

GOVERNING EQUATIONS AND BOUNDARY CONSIDERATIONS 

The present theory is applied to the problem of determining critical 

loads for a uniformly axially compressed cylinder of honeycomb sand- 

wich construction. Attention is directed especially to establishing 

the effect of core stiffness on the distinct instability modes and the 

interactions of these phenomena. The cylinder is shown in Figure 5« 

In Appendix III, the shallow-shell equations are specialized for the 

case of cylindrical coordinates. Uniform, radially symmetric deforma- 

tions are assumed to prevail under the axisymmetric load up to a criti- 

cal value; that is, edge restraints are considered not to influence the 

deformation prior to buckling.  To determine the possible bifurcation 

points of the load-shortening relationship, infinitesimal deformations 

measured from the unbuckled, compressed state are used.  The special- 

ized governing equations (Equations (119) of Appendix III), in terms 

of these deformations, are 

w. 
u,  + v I v.  + — 

u-  + v I v0  + — I 2,x    \  2,cp   R I 

1-V 
+ c — 

,x     2 

1-V 
+ c — 

,x     2 

U.   + V, 
l,cp   l,x 

U2,cp + V2,x 

J >cp 
- Vi 

,9 

+ Vi 

= 0  (2^a) 

= 0  (2Ub) 

1-v 
u.   + v, 
l,cp   l,x 

+ C 
w. 

v,  + — +VU. 
l,cp  „    l,x 

J *9 
" V2 = 0  (21«:) 

1-V 
U2,cp + V2,x 

+ C 
W2 

V-  + — + vu„ 
2,cp  R    2,x »cp 

+ V2 = 0  (2Ud) 
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h DV w    + - 
R l,q)      _ l,x 

+ N w, 
X  l,xx 

+ F 
wl  - w2       c   / 

>cp/ 

: Vi,x+ V2 ̂ / 
(2^e) 

DV w    + - 
R 

v_       + — + vu. 
2,(P       , 2,x 

+ N w. 
x 2,xx 

-   F 
wl  " w2       C    / 

><PI 

- - (Vl,x + V2 /pj (2^) 

■j  - u2 -  c7l + 

Vl  " V2 C72  + 

12F 

12F 

c + t 
+ G-7- I      +     (w.   + w_) .x        2 2,0   / ^      v   1        2' 

0       (2Uh) 

The  appropriate boundary conditions  for  the  specialized governing equa- 

tions  (Equation   (119) of Appendix III)  are 

/ Wl u + v    v,       + — 
1^       \ i^q1    R 

0        or u,     =    0 (25a) 

U^ + V(V^+T) 0        or U2    =    0 (25b) 
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l-v 
u.       + v, 

l,cp        l,x 0        or        v.    =    0 (25c) 

1-V 

2,cp        2,x 
=    0        or        v      =    0 (25d) 

N wn       - D x l,x w. + (2-v) w, l,xxx      v       '     1, xcpcp 
+ - G^y,    =    0     or      w1   =   0     (25e) 

2 

N w0       - D x 2,x w0 +  (2-v) w0 2, xxx      v       '    2, xcpcp + - G 7-,     =    0      or      w     =   0      (25f) 
2 

l,xx l>cpcp 
=    0        or       w. =0 l,x (258) 

w-        + vw. 
2,xx 2,cpcp 

=    0        or       w.        =0 
2,x (25h) 

cG1y1    =    0       or        w1 + w2 + - (G^^ + G^^)    =    0 (25i) 
6F 

As pointed out in the development of Appendix III,   the  thickness of the 

cylinder has been considered negligibly small with respect to the radius; 

thus,   the compressive load is distributed evenly over the two faces. 

In addition to the general instability type of buckling,   the phenomenon 

of very short wave deformations  (face wrinkling)  receives  special atten- 

tion herein.     The length of a cylinder is supposed to be  large enough as 

compared to the wavelength of any typical deformation pattern to allow 

the effect of boundary conditions on the magnitude of the critical loads 

to be  ignored.    The set of nine boundary conditions  (Equation (25)) gives 

rise  to a very large number of possible combinations of generalized forces 

and displacements.    However,   although boundary conditions  are of decisive 
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importance  for edge deformation,   their importance decreases as  the num- 

ber of repeated deformation patt«rns  along  the length of the cylinder 

increases. 

EQUIVALENT SINGLE GOVERNING EQUATION 

It is convenient to consider a single partial-differential equation in 

one of the unknowns rather than the eight simultaneous equations  in 

eight unknowns.     In this way,   the relative importance of the stiffness 

parameters and geometric quantities  can be assessed,   and  the character- 

istic equation for the "classical"  solution can be extracted directly; 

in addition,   the specialization to previous,  but less general,   theories 

for plates and shells can be readily accomplished. 

The governing equations can be written in the form 

A r    =    0 (26) 

where A is the matrix of linear operators and r is a column vector 

whose components are the functions u.. , u^ , v. , v? , w- , w_ , cy. f and cy^ . 

The matrix A is diagonalized when posttnul tip lied by its adjoint to 

yield 

A !|A  I' =  |A| I (27) 
J 

where     ||A..||'    ia  the adjoint of    A    or the transposed matrix of the 

cofactors of the elements of    A    ,   and    I    is the unit matrix.      |A| 

is  the determinant of   A    ,     Instead of Equation (26),   the equation 

|A|   I r    =    0 (28) 

may be solved; that is, a nontrivial solution to the equation, say, for 

the radial displacement w..  , 

JA| Wj = L(w1) = 0 (29) 

must be found.  The symmetric operator matrix A is 
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1 "   u'1 "   11 ™   JI 

; I ™    u', 

i J      m J      w 

<i\   M ■t 
U.   | 

«        h   |    u 

All „ 

£1 

II 

II ^ «ri 

30 



The  linear operator     L     ,   corresponding  to   the determinant     |A|     ,   IS 

DV (   )  + N  (   ) + 
X        ,xx 

/Et      ?FV 
(  ) 

1 (c + tf    ..{   h(   )  -f  - n 
?c lcc(l-v)       G ,fl<p 

Et 

-n    ' 

I ) Ec ) 
+      D^(   )  + N V4(   ) +^ (   ) j x     v      ,xx ? ,xxxx I 

|v'( ) _ 
I GjGg Cc( 

2„h 

-—  (— n    + — ( )   ] 
1-V)       \G1 'XX       G? '-7 

\ Cc        12F / \ Cc(l-v)       G1 >W       G? 
, xx )l 

R?c 

.ll 
Et 

x ,xx      R2  v     ,xxxx 

I   M   ) 
lcc(l-v)        G1 

1 1 ) I    c 1+V ) 
- (   ) ^ -- (   ) _    +2   — (   ) _ +    (   )' 

G2 'XX) ( 12F 
xx 

2G2 ),cpq 

-       Cc(l-v2)     0i   H   ) I 1 12F I 
-(),.,--()„„+  Ö  (   ) ' 

12F lcc(l-v)       Gj 'W       G xx      r        2       '  I 
r,C 

c?    Cc(l-v9   I   M 1 
— ( )     - — ( )    + 

12F U 

,2 

lcc(l-v)       Gj 

ur 1 
CJGJC 

■,. f c •<-1 

R?c? 
^(    ) 

Cc,l-v )   u 1 u^ ) )      1 

xx. <, 
V c in   I .xx 

Cc(l-v)     Gj        '^     G2       '      ),xx- 

Cc(l-v)     s j    M   ) 

|cc(l-v^       Gj 
— r  ^ i(,   I c, -'"" ),„ , 

I. 

(51) 

: 
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The order of  the highest derivative  In this operator  Is  18;   the number 

of  independent conditions  that can  be  Imposed at  the  boundary,   in  terms 

of generalized  forces,  displacements,  or combinations  thereof,   Is 9  • 

Equation       1    relative  to existing  equations of  thin plates  and shell 

theory Is discussed  In a subsequent  section. 

It  may be  noted  that  the operator   in  the governing equation   (Equation 

(29))  can be written as 

-0 * (ff h (52) 

As  terms  of  the order    c/R    have been neglected with  respect  to unity, 

the  second   term on  the right-hand  side of Equation   (52)  can  be Ignored 

if 

t      L..W 

R    L0w 
0(1) 

In estimate of the relative  Importance of the  last part of  the operator 

1.    is made  in conjunction with  the  analyses of the axlsymmetrlc and non- 

axisymmetric buckling modes  carried out In the  following sections. 

Axlsymmetrlc Buckling 

For  the case of axlsymmetric  behavior,   the deformations    v     >  v9 ,  and 

7?     ,   as well as all derivatives with respect  to    q>    ,  vanish and the 

resulting governing operator becomes 

Cc(l-v)        G, 
, XX 

, XX 



where 

(Et  2F \ 

R       / ,xx 

{c + ty 

2c 

2 

( ) xxxx 
+ D( ) + N ( ) 

Et    | 

,XXXX     XV  ^XX   R2     1 

  (  )       " — ( )     + Jgp    ,XXXX   g     ,xx 

2v 
+   Ä 

Cc 

Et 
D( )     + N ( )   + — 

, xxxx   x ^  , xx  R2 ,xx 
(33) 

Thus, for the case of axisymmetric buckling, the l8th order governing 

equation (Equation (29)) can    aplaced by a l^th order equation.  On 

the basis of the same considerations, the number of boundary conditions 

is reduced from 9 to 7 .  Specifically, the boundary conditions given 

by Equations (25c) and (25d) become trivial. 

A solution to the governing equation L (r) = 0 , corresponding to 
s 

"classical" simple support of the faceplates (vanishing radial edge 

displacement and edge moment), is 

w. 

c>. 

it ^x ui C08 T 
IT ^X u2 C08 T 
IT i  "^x wi sin T 
ii .  TTX w2 8ln T 
n 7TX 
CljCOS- 

(3M 

The forms of u. , "p , and  ..  are implied by the relationships that 

exist between these quantities and the radial displacements w.  and w. 

■I 



in the original governing equations.    The "implied" boundary conditions 

for the case of "classical" simple support of the faces 

w      =    D 

w2    =     D 

l,xx l^cpcp 

2,xx 2,cpcp =     0 

(35 a) 

(55b) 

are 

w. 
W.        + V — 

1,X p 

w^ 
u0       + v — 
2,x p 

Wl + W2 + TZ Gl7l,x 
c 

6F 
=   o 

(35c) 

(35d) 

(35e) 

With  the use of the dimensionless parameters 

2 N c' 
x 
2 

77   D 
(load parameter) 

c c 
—    =    —    m 
X L 

(wavelength parameter) 

c4       12(l-v") 

2 2 t R 
h 

7T 

(curvature parameter) 

(thickness ratio parameter) 

•■ 



and 

cp    = 

7T 

GjGg      \c/      2(l-v)' 

F    /c\5    2U(l-v2) 

E    It/ 1+ 

(stiffness parameters) 

a characteristic equation results  as 

h 2 5(1 + G)
2
 ß11 +   ß11 - kß2 + t   j — + 9pß2 + e2 

' ) I   cp I 

^v2 

1-v2 

k 2 ß    - kß^ + ^ o        (36) 

Equation  (36)  is of the form 

Ak    -  Bk + C    =    0 (37) 

where    A ,   B ,  and    C    are polynomials  in the wavelength parameter    ß . 

As    A ,   B ,  C ,  and    B    - kAC    are positive definite quantities,   two 

real-valued positive roots  are obtained for each value of the wavelength 

corresponding  to different values  of  tbj ratio    W../W       •     The relative 

importance of the  last  term of  the  left-hand  side of Equation  (36)  can 

be  readily determined by examining  the coefficients    B    and     C    of 

Equation  (37).     With    N    defined  as    f c  v /(l-V   )     and  irrelevant terms 

omitted,   the  expressions become 

? 
B(ß2) 

,10 

r- 
^ ji + ?. 2 

cpc  v 
(2-S)' 

'■ 



C(ß2)    =    - ß12 + . . .  + 
9 

5Av£ 
1 f 1       i P    ^ 1 
( 9 ) 

+  . . .  + 2J 
^ )1 +"r2 

( CpG   V 

The quantity 

N ^ 

9 

Et 

2 2 cpe v 2FR (-:) 

is of the order of magnitude    c/R    for typically large values of    E/2F 

(for example,    2 x 10    ) and    t/R    (for example, 5 X 10      )  and  is 

therefore to be neglected with respect to unity. Hence,   the con- 

tribution of    N 
2 2 

to  the  last term in both    B(ß   )     and    C(ß   )     is 
k 2 

negligible.    The effect of    N    in the coefficient    ß      in    C(ß  ) 

is certainly small,   as 

^ 01 -   «o 
cpv 0 

These and other simplifications of the same nature, although not essen- 

tial for a numerical computation of critical values of the load and the 

wavelength, allow an analytical evaluation of both in closed form.  When 

the N-term is negligible, the characteristic equation simplifies to 

32k - ißk  + q> + ?; 
iß6     1+  2 2 I 

: *       ) 

5(l + 02 3^ + ^ +9pß
2 + G

2j(ßV)j = o  (58) 

The characteristic equation (Equation (56)) and its simplified form 

(Equation (53)) are solved for the load parameter k by using typical 

values of the curvature, relative thickness, and stiffness parameters 
10 
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The load parameter k versus the wavelength parameter ß , considered 

to be a continuous variable, is plotted in Figure k.     In Figure 5, a 

similar solution is presented for values of the various parameters 

corresponding to low values of F and G.  to assess qualitatively 

the buckling of a relatively weak-core sandwich shell. For compari- 

son, corresponding solutions based on existing theories (References 

11 and 8) are shown also.  No quantitative distinction can be made 

between the solutions of the complete and simplified quadratic charac- 

teristic equations; thus, only a single curve is evidenced for each 

branch of the solution. 

The characteristic equation is of the form 

(k - kj) (k - k2) = o (59) 

where 

k (ß2)  =  ß2 + —tr (^o) 
ß 

and 

5(l + e)2ß2       i 
kp(ß2) = -r  + ß

2
+— (kl) 

^ + 0Pß
2 + e

2      ß2 

Stationary values of k.  or kp occur whenever ök/ö(ß ) = 0 , and 

a critical situation is reached when the stationary value of k is a 

minimum (3 k/ö(ß ) > 0)  . As ß is a real-valued quantity, ß 

is always nonnegative and, in practice, always positive. The root 

k.    has only one stationary value; a minimum occurs when 

(H (. + ü
lA - <?1/h m 

37 



and  the  corresponding critical  load  is  given by 

K) 
1 

since,   as mentioned earlier,    t^/cp    may be neglected in comparison with 

unity.    The root    kp    usually has more  than one stationary value  in 

the    ß     interval under consideration.     This may be seen in Figures 4 

and 5 •     For the more practical set of core parameters, minimums occur, 

corresponding to  two very distinct values of    ß 

The longwave  instability mode     (ß « l)     can be analyzed by neglecting 

terms which are  obviously small due  to  the  small  size of    ß     .     Equa- 

tion (hi)  then simplifies to 

5(l + c)2ß2      f. 
k2   Ä    2 — + - {hh) 

epß   + c ß 

From this expression, a critical wavelength parameter 

-1/2 M = cr1/2 

cl 
(i + o V'x - epi; 

and the corresponding critical  load parameter 

(^5) 

(kcr)   =  2(1 + C)   jr/r2 - 0pr/r2 (1+6) 
cl 

are determined.  It may be noted that the terms neglected in Equation 

(kk)  are those originating from the inclusion of the effects of face 

bending stiffness and the core normal strain.  Obviously, the result 

obtained corresponds to the classical solution of Reference 11; there- 

fore, the critical wavelength and load have been assigned a subscript 

"cl" for this case. 

50 



For the shortwave instability mode, ß  is of the order of magnitude of 

unity or even larger.  Equation (hi)  may then be simplified to 

5(1 + cr 
k      ~   — 2    -    „2 

ß AP + 0P 
+ ß (^7) 

The critical wavelength and  associated  load  parameter are 

Kr) 1     + Jqn  -   0pcp 
1/2 m 

and 

(kcr) 2(1 + c)       5cp  - 9pcp (^9) 

The results presented  in  this  section are discussed  in detail  in  the 

subsequent  section entitled  "RESULTS AND DISCUSSION". 

Nonaxisymmetric  Buckling 

For the case of nonaxisymmetric buckling,   a  solution of the general 

equation  (Equation  (20))   is sought.    Such a  solution,   corresponding 

to "classical"  simple  support of the faceplates   (vanishing edge dis- 

placement and  edge bending moment),   is  available  in the  form 

v. 

wn 

w. 

cy. 

LC>2. 

U- cos 7Tx/X  sin ncp 

U cos 7Tx/X sin ncp 

V sin TTX/X cos ncp 

V sin TTX/X cos ncp 

W sin TTX/X sin ncp 

W sin TTX/X sin ncp 

cl cos TTX/X  sin nc;- 

cV sin TTX/X  cos  nrp 

(50) 



The forms of u.. , u^ , v. , Vp , 7, , and 7p are implied by relation- 

ships that exist between these quantities and the radial displacements 

w.  and w  in the original governing equations. The "implied" boundary 

conditions for the case of "classical" simple support of the faceplates 

are 

Wj = D 

w2 = D 

w,   + vwn     = 0 l,xx    l,cpcp 

W-   + vwn 2,xx    IjCfCp 

(51a) 

(51b) 

w. 
Ul,x + V = 0 (51c) 

v1  = 0 (51d) 

W2 
U2,x + V " R J 

= 0 (51e) 

v2  = 0 (51f) 

c 

6F 
Wl + W2 + ~ Vl,x (51g) 

With the use of dimensicnless parameters previously defined and the 

buckle aspect ratio parameter 

2-2 n X 

2D2 71 R 

'X 

a characteristic equation is  obtained  as 



ß\l + p)2  - kß2 + ^  + cp .5(1 > O2 ßö(l + P)   ]— +-ß2(l + PP2)1 
l-v      P 

ß^l + p)
k - kß2(l + p)2 + ^ 

0p(l + p) ß 

8 

, 2c2       1 + p/p2      0 
^ + -ß2(i + P): 

l-v        1 + p p 

+ {c'p4 +- (1 + p)2 . — + -ß2(l + pp2) 
cp )    ( l-v      P ] 

+ < ̂ ß ß^l + p)k - kß2(l + p)2 + ^ 

2 2/     2 
?               ?          2e     9      ?   / 2p    ?^ 

. + - ß^l + pp") r - pß"     1 + v + — ß 
Ll-v    ( l-v     P )    l-v   P \ öcp     ^ 

^                       (2G2
       

0     2 2 2 
— p(2 + p)      + - ß"(l + PPT + 0 q 

cp { 1-V       P 

+ ^
8

P(l+p)2  (1 + e)
2 

12c"        3 ( 2e2      9 
(p + 2)    — +- ß^l + PP^)! 

-. \* 

Ll-v      l+v l-v     P 
=    0       (52) 

This equation reduces to LL._ characteristic equation for the case of 

axisymmetric buckling  (Equation (36)) when the wave aspect ratio    p 

is set equal to zero.    For nonaxisymmetric buckling,    p    is positive 

definite and the last part of the characteristic equation,  marked by 

hi 



an asterisk, can be ignored if the condition 

^/cp <•   0(c/R) (55) 

is satisfied. 

Then, Equation (52) reduces to the form 

(k - k^ (k - k2) = 0 (5M 

where 

k  = ßd(l + p)d +—Z- 
ß 

and 

(55) 

k2 = ß2(l+p)2 + -j 2 
ß'd+p)' 

5(l+e)2ß6(l+p)2 T^ + f ß2^1^2) 

9p(l+p)ß 
£i!.l±2Z£! + eß2(l+p)] + [£2^ + ä_(l+p)2][£e! + £ 
1-v  1+p  pK v r/J      cp v K/ il1^   p ß

2(l+pp2) 

(56) 

The first factor on the left-hand side of Equation (5*0 leads to the 

critical value of the wave parameter 

(cp + £)■ 

(ß")1 
= -^f p ,1 + p 

and the associated critical load parameter 

(kcr)  = 2(1 + p)  fp + I    « 2(1 + p)  7 

(ßcr) (57) 

p=0 

(l-P)^^ 
p=0 

(58) 

h? 



Since    p    li positiv« definite,  the critical wavelength end  the criti- 

cal load are larger than In the case of axlsyrametrlc buckling    (p     0) . 

The second root of Equation (5'«)>    k_    ,  Is rewritten by dividing the 

last terms by the nonsero factor 

?f        0    2 2 — ♦ - f^d ♦ po 
l-v 

Then, 

k?   -    02(l*p)? ♦ 
' Hi*)2 *2(I*P)* 

*T 
P2(UP)2   ^ (I+P)? ♦ tepf>2{i*9) ♦ €

2 

where 

(59) 

(60) 

The factor f depends on the ratio of the core shear moduli p  and 
o 

is equal to unity for the case of an Isotropie core (p - 1) .  It 
o 

can be observed that the dependence of f on 0  is not large, since 

p -  Cp/C.  possesses values in the interval 0.6 to 1.5 for practi- 

cal honeycomb-core materials. The wave aspect ratio parameter p ° (X A„)' 

is less than or about 0.25 for longwave deformations. 

In particular, the ratio 

?   'f 
P" 

tf 
^   f ß2 ^  (^-1/P2) 

P2(l+p/)  + ft" 
p  v r/      l-v  1+p 

(Cont'd) 

'.' 



p(2-p?-l/p2) 

flx^ 2  x     2,;2D        1 [lWp2+flfi!ü^(1+p)2| 
1            2€ p           1 

1 l-fpj)    *   mX•r"     1 
1                    0ß?(l-v)j 

p(2-p8-l/p2) 

\     ee2(i-v)/\      2c2p   / 

< - (8-p2-l/p2)   (Cl) 

Is saall vlth respect Co unity. If p - 1 (Isotropie core), thsn th« 

rstlo vanish««. For «xanpl«, when 

2 
2(0 

ee2(i-v) 
10 ±i 

thsn 

32df/ae2      p 
  < - (2-p2-l/p2) 

f       12 

For very short wavelengths, 

1 + p df 
f -♦  r  and  —r -• 0 

1 + pp^      bfi* 

Upon neglect of the dependence of    f   on   ß      and vlth the assumption 

that   0      Is small compared to unity (longwave buckling), the critical 

values for the wavelength and load parameters are obtained as 

cf 
1/2 

(ß4x ■ -^ c(i+c) (up)    5C - feoC 
■1/2 

(62) 
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and 

ci 
epCA' 

for • glvan value of p . Equation (63) •how« that wh«n tha cora 

■haar ttlffnaft approach«» Infinity (0 -♦ 0) , than 

\ 

(63) 

^ ) ' cr' 
2(l*c) VJCA 

cl 

Thl« result corraspondi to nonaxl«ynnctrlc claaalcal buckling of a 

honoganaou« Isotropie shall and 1« Identical to tha raault obtalnad 

for tha axlayHMtrlc nod«. However, whan tha «haar «clffne«« Is 

finite, Equations (63) and (U6) (axlaynnctrlc buckling caaa) indi- 

cate that tha two claaalcal «andwich shall results arc dlffarant. 

Indeed, for practical valuaa of tha cora shear stlffnaas parameter 

(0.0 < P < 1.5) f tha nonaxlsynoMtrlc buckling node laada to a 

slightly dlffarant value of tha buckling load. Tha applicability 

of these •quatlona for long shall« to shalls of finite length Is 

dlscussad later. 

For a shortwava buckling node (0 «0(1)) ,  tha critical wavelength 

paraaatar 

M [(U€) \5^ - f9P(p|l/g 

and tha corresponding critical load paranatar 

(kcr)     =    (1+|,) |2(1+€)     **   ' tep*\ 

(1*9) 
 , 1+P 1 

2(l+€) -^cp   -  5 0Pq) 
1+pp      J 

(610 

(65) 

k5 1 



ilnce for very short wavtlangthi, 

f -♦ 
1+?P2 

Equation (65), «hon conpartd with Equation (U9) for tha axlaynaotrlc 

casa,  indicate« a hlghar valua of tha critical load parameter when 

(1+p)2 2(1+0       ' 
<   1 ♦  (66) 9 

i+p, öoq, 

In most casaa thia condition will bo met; a more conplete discuaalon 

follows in tha aoction entitled "RESULTS AND DISCUSSION". 
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RESULTS AND DISCUSSION 

THEORY 

The gtncral  theory devrloped In thli investigation It glvtn by Equation« 

(17),  (18),  (19), and  (PC).    Thas« relations represent tha govarnlng 

aquations and aasoclatad boundary conditions which can ba uaad to da» 

acrlba tha banding, buckling, and postbuckllng bahavlor of sandwich 

•helU (and curved platea).    This theory la applicable to srndwlch 

shells which are constructed of thin,  laotroplc face layers and a 

honeycomb-type core layer;  It Is considered to be the onst complete 

end consistent theory developed to data for such a configuration. 

Of tha many sandwich shell theories which axlat  it   the literature, 

the recant atudles  (References ^ and 6) by Wenpner et al. are the 

moat advanced studies with which the present development can be com- 

pared.    It would appear from a cursory examination that tha two the- 

ories essentially deacrlbe the aama problem; nevertheless,  It la 

evident, as will be disclosed, that there are narked and Important 

dlfferencaa relative to both development and applicability. 

A direct comparison with the work of Uempner et al.  reveals that: 

1. The treatment of the face layera is equivalent. 

2, The core considerations utilized In Reference 5 are baaed 

on a model In which a contradiction exlata between the 

linearised equilibrium equation employed and the nonlinear 

strain-displacement relation assumed.    That is,  the core 

is assumed to be in a linear state of antiplane stress 

while the kinematic relations tacitly imply a more com- 

plex behavior. 

%    Even though both theories take into account the effect of 

core thickness with respect to radii of curvature,  the the- 

ory of Reference 5 does not account for the fact that a 

honeycomb core   (which is within the weak core family for 

which the theory is stated to be valid) does not possess 

the same core shell area at the the  two  interlaces.     For 

1*7 



thin landvlch ihtlli  (c/p ntgllßlble),  chtn consIdcmtIon In 

not Important.    However,   for thlck-coro iiflndwlch sholl«,  the 

only example which la  llluatratad In Rclercntc 5,  the con- 

•Idcration la Important and randera the roaulta quoatlonably 

applicable to a honeycomb-core aandwlch or,  In fact,  to any 

thick-core aandwlch In which an Initially flat cor« medium 

la  formed Into a curved aurfaca. 

U.     In Reference 6, which apaclflcally traata thin aandwlch ahella, 

Cha final aquatlona praaantad are inapplcabl« to the complete 

atudy of the buckling of auch ahalls, alnca a groaa assumption 

ia invoked that precludes  the occurrence of tha antiaymmatric 

face-wrinkling mode of inaCability. 

3*    Tha boundary conditiona praaantad by Uampner et al. ara de- 

veloped independently of Cha governing aquationa  and ar« 

stipulated in terns of adga forcea only.    Tha praaant theory 

davalopa both governing aquationa and force-displacement 

boundary conditiona within the consistent framework of a 

complete variational treatment. 

The governing equations  (Equations  (17),  (18), and (19)) of the preaent 

theory can be shown to be equivalent to a single l8th-order partial 

differencial equation in any one of Che variables  (for example,  Che 

normal diaplacemenC of a face layer).    The associated boundary con- 

ditions,  given by Equation (30),  are consistent with Che l8th-order 

system since 9 boundary conditions on eiCher generalized force or 

diaplacemenC can be preacribed at an edge of the shell.    A special 

case of Che general equaCiona is applicable to Che buckling of a thin, 

circular cylindrical shell  (see Equation (31))*    This equaCion has been 

obtained by systematically reducing Che eight governing equations for 

the Chin,   circular cylindrical sandwich shell in axial compression 

(EquaCion  (2k))  through the use of linear operators. 

Before undertaking the discussion of the results of the application of 

the present theory to the compressive buckling of thin,  circular cylin- 

drical shells,  It is of Interest Co show the relationship of the present 

k8 



■ Ingle-governlng equation of the 18th order with prevloui equallonii 

utilised to atudy the buckling of flat platea end circularly curved 

plates and cylinder!,  Including the aaaoclated requirement for auf- 

flclent boundary conditions to effect complete tolutlona.    With 

reference to Table I,  it can be seen that the present 1 th-ordor 

equation, requiring 9 boundary conditions per edge, reduces to the 

7 other caaes indicated when the preacribed simplifying assumptions 

are enforced.    From the table,  It is noted dramatically that the  trend 

toward higher performance structures evidences increesing complexity 

with regard to theoretical considerations.    This point, although  the 

result of theoretical considerations,  cannot be casually dismissed by 

individuals concerned with the design,  development, snalysis, and 

testing of aerospace components which reflect a strong structures- 

materiels interface aimed at achieving Increased structural efficiency. 

AXISYMMETRIC BUCKLING OF THIN.  CIRCULAR CYLINDRICAL SANDWICH SHELLS 

The solution of Equation (29) for the case of axisymmetric buckling 

leads to the buckling criterion, Equation (36), which is presented 

graphically In Figure h.    The figure shows the variation of the 

buckling load parameter   k   with wavelength for the cylinder de- 

scribed by the parameter values noted.    As mentioned earlier,  these 

parameter values reflect an actual cylinder,  the test results for 

which are described In Reference 10.    Figure U reveals thst three 

distinct mlnlmums occur for practical values of the core stiffness 

parameters.    Each minimum corresponds to a different buckling mode; 

namely, one relatively long-wave antisymmetric mode and two relatively 

short-wave modes corresponding to antisymmetric and symmetric buckling. 

When the case of a shell with very low values of the core moduli  is 

considered,  a different behavior,   leading to consonance of the two 

usual antisymmetric modes,  is evidenced  (Figure 3).    Although, on the 

basis of weight considerations, such a structure might appear to be 

advantageous,   the low shear stiffness and the correspondingly large 

shear deformations would render the composite impractical. 
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Figure h. Relation Between Load Parameter k and Wavelength 
Parameter ß for a Sandwich Cylinder of Practical 
Properties. 
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The character of Che different buckling model  (Figure '0 can be readily 

rccognlzeil  If a deformation vector 

u 

w 

w 

C/ 

1 

"1 

u. + U2 

u. - U2 

w + ¥2 

w ■ V2 

?c r\ 

(67) 

la conaldered. By performance of elementary row operatlona on the 

matrix A (Equation (26)), and after aubstltutlon of Che solution 

given by Equation (5M»  thla vector can be written aa 

x 

(l-v2)1/2 

6(l-v ) ' 

7TV 

(1-K) 0 
— [>".**.^.„'.^^ 

—— fß1* - ke2 + r + ^l 

i _L_ If.**.A 
TT   3(l+c)    V ' 

OP / 

-d+o   w\ 
?(l.v2)l/? 

- kß2 + r lie14 }\zu - ka2 + r +(p) 

J 
(68) 

r:- 



For a solution to Equation  (ho),  only the components    u    and    w    are 

nonzero.    Since the ratio 

U TTV r        f v C 
-   =   — —       s  — . - (69) 
W 12(1-V   ) 0 Tip       R 

and,  usually,  since    ß > 1    ,   the relative face displacement 

HV) 
Is seen to be the significant deformation. Thus, the buckling mode 

Is characterized by essentially symmetric displacements of the faces. 

The wavelength of this Instability mode Is of the order of, or smaller 

than, the core thickness (Equation {h2))\  this mode is referred to as 

the symmetric wrinkling mode. 

On the basis of a comparison similar to that made in Equation (69), 

the solutions corresponding to Equations (hh)  and (U?) are recognized 

as being essentially antisymmetric in nature (w » w , u » u) 

These characteristics are more pronounced in the case of the longwave 

buckling mode than in the wrinkling mode. The former has already been 

related to the classical Instability mode (Equation (^6)); the latter 

is referred to as the antisymmetric wrinkling mode. 

In Figures k  and 5, the curves for the antisymmetric solution based on 

the classical theory of Reference 9 approaches an asymptotic value for 

large values of the wavelength parameter. Equation (hk),  which is valid 

also if F -»oo (cp _>M) ; reveals that for increasing ß  , the load 

parameter k  approaches the classical theory value 3/0P if e = 0 

(membrane faces). The corresponding value of the load 

?Nx =  GjC (TO) 

is referred to as the cere shear-failure load in the classical theory. 

When the bending stiffness of the faces is included (Reference 8), the 
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value of the load parameter does not tend to the asymptotic value but 

Increases rapidly with Increasing values of the wavelength parameter. 

This case is described by Equation (hi)  of the present analysis when 

cp -»oo . The solution based on the theory of Reference 5, which employs 

the same degree of freedom as the present development, does not reveal 

the existence of the antisymmetric wrinkling mode for reasons explained 

earlier. That is, an arbitrary, and obviously eminent, assumption that 

the effect of normal strain is of negligible order in antisymmetric 

deformation of the faces precludes the occurrence of a possible buck- 

ling mode. 

Closed-form expressions for the critical wavelength parameters, the 

associated load parameters, and the stresses are shown in Table II 

for each of the three instability modes discussed.  It can be con- 

cluded from these results that the symmetric wrinkling mode, for 

practical parameter values, corresponds to a lower value of the load 

parameter then the antisymmetric wrinkling nude.  If the converse 

were to be true, then 

2(1 + e)   vScfT   - 9pep    <    2    .^ 

or 

epep 

2(1 + e) \'T- 2 

However,   for the left-hand side of the inequality,   the assumption 

ß2    =     (1 + e)    /SqT   - 0pcp    >    1 

(71) 

This same conclusion  is evidenced in the behavior of axially com- 
pressed,  simply supported columns and plates. 
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is made;   that  Is, 

_        i + epep 
cp  >  (72) 

(1 + c)     3 

The quantity 0pcp = (IS/TT )(F/G.) reflects values from 5 to 10 for prac- 

tical honeycomb-core materials.  If, for example, e = 0.05 , then the 

conditions Equations (71) and (72) require that 

1 + 9pcp < 1.82  cT < i.ll 0pcp (73) 

and the interval    [1 + 0pcp ,  1.1 0pcp]    is nonzero only if    0p(p > 9  ; 

this appears to be highly unusual.    Thus,   the critical instability 

mode is either the classical mode or the symmetric wrinkling mode, 

according to the present theory.     It is also observed that both 

wrinkling modes show wavelengths that are smaller than the thick- 

ness of the shell and possibly of the order of magnitude of the cell 

size of the core material.    The extreme situation requires a treat- 

ment of the core as an aggregate consisting of discrete elements 

rather than an idealized continuum. 

As long as the theory is applicable,  any intent to design a structure 

with the same safety margin with respect to different instability 

modes requires that 

2(1 + c)      5?/G2 - 0P^/e2    =    2'    cp (71+) 

or,  approximately    (c « 1)  , 

0pcp   =    - 2 Y   cp3/2 + 2       ^-   cp (75) 

For each assumed value of the curvature parameter   f     ,  the relation 

between    epv    , which is proportional to    F/G.     (a characteristic 
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quantity for a core material) and the core stiffness parameter    cp    can 

be determined.    Figure 6 shows a stability boundary for the two modes 

of buckling.    The ranges of practical values of    dprp    are Indicated 

for two typical core materials. 

NONAXISYMMETRIC BUCKLING OF THIN.  CIRCULAR CYLINDRICAL SANDWICH SHELLS 

The  solution to Equation  (29)  for the case of nonaxlsymmetrlc buckling 

leads to the buckling criterion given by Equation (52).    The critical 

values of the wavelength parameter   ß    and the corresponding load 

parameter    k    , obtained from this equation,  are shown In Table III. 

A comparison with the corresponding results for the case of axisym- 

metrlc buckling discloses  that for both wrinkling modes,  the critical 

values of the wavelength parameter are    1/    1 + p    times the values for 

the axisymmetric case.     In the Isotropie case    (p =   1)     ,  the critical 

load parameter Is    (1 + p)    times as large for both wrinkling modes. 

The longwave buckling mode  (classical mode)  also reveals a higher buck- 

ling load for the nonaxlsymmetrlc case,  as the positive factor 

0    9      2€2     (1 + p/p2) 
f - ßd + — 

p      i-v   (i + pr 

0    P               P         2e2 

1 + p - ß^l + pp^)  +   
p 1-v 

Is  smaller than unity If 

2 2£2     (2 + p  -   1/p2) 
0pß2   >  (76) 

l-v       (1 + P)2 

This condition Is usually satisfied, as all quantities are nonzero and 

positive while l/p2 < 1.5  ; that Is, the right-hand side of the In- 

equality Is negative In many practical cases. 

However, It should be noticed that for shells of finite length, this 

conclusion Is too sweeping.  In the foregoing analysis, the wavelength 
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Figure 6. Stability Boundary for Longwave and Symmetric 
Wrinkling Instability of a Honeycomb Sandwich 
Cylinder    (c/R = 0.05  ,   t/c = 0.05)   . 

60 



to 

00 
c 

'S 

u 
a do 

4J   'rl 

^S 

A id 
id u 
U 'H 
w m 
C 10 
H cd 

« U 

51 

+    — 

OJ 

8- 

+ 

\l 
-4- 

vT 
W 

<\J 

^ 
s 

£ 

+ 

CVI 

w 

<\j 

0» 

a + 

5 

a) 

i-i a» 
O U 

4J i 
^1 u 
u id u a 

r^ 
a + 

OJ 

CO 

e- a 
CD 

a + 
CVi 

+ 

1^ 

ID 
+ 

CVJ 

tr 
w 

? 

ID 

CD 

UH ?* 

OJ 

rA 

+ 
CVJ 

« 

or 
w 

9- 

^ 

A 

ca 

ca 

id u 
U 4) 

•H h 

u a 

c o 

CO 
w 
< 

61 



parameter ß  is treated as a continuous variable.  When the cylinder 

is assumed to accommodate only an integer number m of halfwaves, then 

ß = (c/L)m just takes discrete values. Either one of the two discrete 

values enclosing the theoretical critical value of a continuous variable 

ß may correspond to the lowest value of the load parameter k . This 

value of the load parameter, of course, will be higher than the minimum 

value reached in case of a continuous ß .  The magnitude of these 

deviations from the critical load parameters as given by Equations (^6) 

and (65) can be ascertained only by numerical evaluation of a particular 

case. However, it can be observed that this effect is small as äk/öß 

is near zero in the vicinity of the critical wavelength. Only in cases 

where the last term on the right-hand side of Equations (^6) and (65) is 

small with respect to the first term (0pf;/e « 2(l+€)  3^/e2 ) may 

the nonaxisymmetric buckling mode yield a slightly different and pos- 

sibly lower buckling load. However, in view of other simplifications 

made, the axisymmetric buckling load can be used to predict the clas- 

sical buckling mode in most practical cases. 

WEAK CORE SHELLS 

The approximate closed-form expressions for the critical loads and wave- 

lengths of the two antisymmetric buckling modes are derived on the basis 

of assumptions with respect to the order of magnitude of the wavelength 

parameter ß . For the classical mode, ß is assumed to be much smal- 

ler than unity. In order to assess the effect of the core stiffness on 

the critical wavelength, the axisymmetric case is considered (Table II). 

It is seen that for the classical mode, 

5ß       c    6X     ß^ 
-^ > 0 (77) 

5(0p)      X2 5(ep)    2e2 

The quantity    9p    is proportional to    l/Gj    .    For decreasing core 

stiffness,    d(0p) > 0    and, hence,    dX < 0    .    If    ep    approaches the 

value    e(l+e)  '\TR    ,  then the wavelength parameter tends to  infinity 

(the wavelength tends to zero)  and the approximation is no longer valid. 

62 



This degenerate case is the classical "shear-failure" phenomenon, with 

a critical load parameter 

u cl 5(1 + e)7ep (78) 

5ß c      ÖX 

X      öcp 

v3    1 + e ^ 
äcp 

 ^        ■ ^   u 
li      cp       ß 

For the shortwave antisymmetric wrinkling mode, the wavelength parameter 

ß Is assumed to be of the order of magnitude of unity or larger. To 

evaluate the effect of core shear stiffness In this case, It must be 

noticed that the quantity 0pcp Is proportional to F/G.  and that this 

ratio does not vary appreciably for a given type of core material.  Then, 

(79) 

But as dtp < 0 for a decreasing core stiffness, dX > 0 .  If with de- 

creasing core stiffness (1 + e) "\ 3cp - 9Pcp -»0 , then (ßc_) -♦ 0 

(the wavelength Increases beyond bounds) and the assumption 

ß = O(l) Is violated. 

Clearly, the wavelengths of the two antisymmetric buckling modes ap- 

proach each other as the core stiffness decreases, and they eventually 

coalesce (Figure 5). Which of the two critical load formulas (Equa- 

tions (ko)  and (^9)) best approximates the minimum value depends on the 

magnitude of ß for which the coalescence occurs. The "shear-failure" 

formula (Equation (78)) constitutes a lower bound In any case. 

The criteria developed herein are utilized to predict the buckling loads 

of the sandwich cylinders constructed and tested as reported In References 

10, 18, and 19.  In the first and last, axial compression tests were car- 

ried out; In the second, the cylinders were tested in bending.  With re- 

gard to the bending tests, the cylinders reflect thickness-to-radius 

ratios and radlus-to-length ratios sufficiently large to permit the 

use of the axial compression buckling criteria. 
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The results of the comparison of theoretical prediction with experi- 

ment Is presented  In Table IV.    The theoretical buckling stresses are 

obtained,  as appropriate,   from either Equations  (kj),   (1+6),  and  (^9) 

or their reduced-stiffness counterparts developed In Appendix IV as 

Equations  (125),   (127),   and  (129).     In view of '-he fact that all of 

the cylinders  tested demonstrate practical construction and that the 

bending  tests were somewhat affected by end conditions,   It would ap- 

pear that good agreement has been realized.     The  Implication,  based 

on the limited  test data,   Is that buckling stresses  for sandwich cylin- 

ders with geometric and material parameters  in the practical range of 

Interest are given In good approximation by linear theory with no ap- 

parent need for the excessive "knock-down"  factors appearing In current 

design criteria.     The ratio of experimental and  theoretically predicted 

critical stress,     T]    ,  based on the data of References  10,   18,  and  19 

and  the present  theory  (see Table  IV),   is  shown in Figure 7.     For com- 

parison,  design recommendations applicable  to general instability of 

initially Imperfect,   linear elastic shells   (see References 20 and 21) 

are Included  in Figure 7. 
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CONCLUSIONS 

This report presents the governing equations and boundary conditions 

for moderately large deflections of a sandwich shell of arbitrary 

shape.  Equilibrium equations and boundary conditions for both the 

thin-face layers and the thick-core layers are consistently derived 

from the condition for a stationary value of the total potential. 

For the core, the face parallel stresses are neglected; but the 

transverse strain is included, and, unlike previous theories em- 

ploying the same degrees of freedom, the relevant strain displace- 

ment relations for the core are linearizes.  The stiffness parameters 

of the core are assumed to vary linearly through the thickness, as is 

the case in a curved-core layer of cell structure. In Reference 5> 

not only linear terms in the normal coordinate are retained but also 

higher order terms, while the stiffness parameters are assumed to be 

constant. The present approach is believed to provide a more consis- 

tent treatment of the core. These assumptions allow the three equi- 

librium equations of the core equation to be integrated with respect 

to the normal coordinate; all loads transferred by the core can be 

expressed in terms of the components of the face displacements and 

two core-shear angles, while two compatibility equations are obtained 

as auxiliary conditions. 

As a final set, three equilibrium equations and four boundary condi- 

tions for the edge of each of the face layers are presented in terms 

of the face-displacement components. They are of the type usually 

obtained on the basis of the Kirchhoff-Love assumptions for a thin 

shell. 

In addition, two compatibility conditions and one boundary condition 

for the core are given also in terms of the face displacements. The 

eight governing equations and the nine boundary conditions, then, are 

functions of two surface coordinates only. 
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Linearization leads to a set of equations with a symmetric operator 

matrix as is appropriate for a linear elastic system. The order of 

a single governing equation, as derived from the operator matrix of 

the full set, is 18, with 9 boundary conditions which can be speci- 

fied at an edge  in terms of either generalized  force or displacement. 

The specification of a consistent set of boundary conditions  is nec- 

essary not only for the derivation of an exact or approximate solution 

to a problem but also for a meaningful comparison of theoretical pre- 

dictions and the results of appropriate tests.    Although the nine sets 

of boundary conditions occur in a discouragingly large number of pos- 

sible combinations,  practical designs will limit the number of com- 

binations and should,   in addition,  stimulate the analysis of important 

boundary situations other than the very limited set that is usually 

considered. 

The unified theory is used to estimate the range of applicability of 

classical theories or simplified versions of the present theory.     In 

an example,  the critical loads for an axially compressed circular 

cylinder are determined. 

In general,  three instability modes are possible: 

1. An instability pattern with a wavelength of several times the 

shell thickness and negligible transverse strain.    This mode 

corresponds  to the results obtained from the classical sand- 

wich theory,   ignoring core normal strain. 

2. A face-wrinkling pattern of very short wavelength (of the 

order of the shell thickness) and characterized by essen- 

tially similar face displacements   (antisymmetric wrinkling). 

5.    A face-wrinkling mode of comparable wavelength but face dis- 

placements  that are essentially symmetric with respect to the 

middle surface of the shell  (symmetric wrinkling). 

By means of a parameter study,  approximate expressions  for the critical 

loads and wavelengths of all three instability modes are derived.    The 

limits of applicability are indicated.    The study also reveals that the 
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symmetric wrinkling mode will,   for most practical sandwiches,   lead to 

the lowest wrinkling load.     In Reference 3,  the opposite conclusion Is 

reached;  however,   It appears that the results of numerical analysis 

are not consistent with the basic theory. 

The parameter analysis further discloses that, with decreasing core 

stiffness,   the wavelengths of the two antisymmetric modes (wrinkling 

and overall Instability) approach each other and finally coincide. 

The coalescence of critical wavelengths can occur near the overall 

instability wavelengths as well as near the wrinkling wavelength. 

Only in the first case Is the classical "shear failure" formula a 

good approximation. 

The critical  loads derived from a nonaxlsynmetric deformation pattern 

may be lower In case of the longwave deformation, but It Is shown 

that the difference will be small. 

A comparison with limited experiments suggests that critical  loads 

derived from a linear analysis of axially compressed sandwich cylin- 

ders should be used to predict the buckling loads of such cylinders. 

The present analysis shows also that a consideration of the discrete 

core structure may be necessary to account for existing discrepancies 

between linear theory and experiment.    However, unlike the case of 

homogeneous,   Isotropie shells,  the discrepancies that do exist appear 

to be more a function of core deformation prior to buckling and in- 

elastic behavior at buckling rather than the result of overall  im- 

perfections  in the sandwich shell wall. 
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APPENDIX I 

VARIATIONAL DERIVATION OF THE GOVERNING EQUATIONS FOR FACE SHEETS 

The face sheets are treated as thin, shallow shells of linearly elastic 

Isotropie material. The governing equations are derived from the con- 

dition for a stationary value of the total potential. The total poten- 

tial Is defined as the sum of the strain energy function and a potential 

function of the applied loads, as appropriate. 

THE STRAIN ENERGY FUNCTION 

The appropriate strain energy density expression for linearly elastic 
7 thin shells, consistent with the Kirchhoff-Love assumptions, Is: 

W. 2   2 Cj + 62 + 2ve1e2 + 
1-V 

12 

2   2 2 
K,   + K     +  2VK,K0  + 2(1-V) K r2 12 

(i *  1,2) (80) 

For the case of small strains and moderate out-of-plane rotations, the 

Inplane rotation about the normal, determined by the quantity 

n = | u a. + r^-a. 
"l ^1  a2 ^2 ala2   Mg a^S 2'il 

Is neglected with respect to the rotations of the normal to the middle 

surface given by 

^i  = TT vit and 1     Gj '^       Pj <^_ 
a2     h 

v 
(81) 
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The middle surface strains are then approximated by 
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The geometry is shown in Figure 1; the coordinate directions 1 and 2 

are directions of the principal curvature; the principal curvatures 

are l/p1 and l/Pp , respectively. The changes of curvature and 

twist of the deformed middle surface are 
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The total strain energy of a face sheet is then 

Uf.    =  ff\W2 
1 D 

d^d^ (i =  1 or 2) m 
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POTENTIAL OF APPLIED LOADS 

The boundary loads on a face sheet are Indicated in Figure 2.     Upper- 

case letters denote loads per unit length;  lowercase letters denote 

loads per unit area. 

For the variational problem,  as the equivalent of the principle of 

virtual displacements  for an equilibrium system,  a potential  of ap- 

plied loads    V    is appropriately defined as: 

ÖS 

Nd    +Nd    +Nw + MüD    -M   CJD     a    )     d| nn        ss z nn        nss|s( s 

±   ^{MU±2"l) + q2(V±^) + (q5_P)W| 

0   «iM^i^s (85) 

in which 

üü w. 
d       d n       s 
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1 
— w         ■ 
a        *n n 

d s d n 
T pn 

The total potential function is then defined by 

Ti = Ui+Vi 
(86) 

It should be noted that the neglect of the inplane rotations and the 

product terms in the potential expression involving the out-of-plane 

rotations leads to Euler equations of a first variation that are incor- 

rect  in  terms  involving rotation components.    Adjustments will be made 
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later to obtain the simpler form of equilibrium equations for coordinate 

directions on the deformed surface rather than for the original coor- 

dinate directions. 

Variation of the Total Potential 

For an equilibrium system,  the first variation of the total potential 

vanishes for any set of variations of the argument functions compatible 

with Imposed boundary conditions.    Carrying out the first variation and 

Integrating by parts Integrals containing derlvat.ves of the argument 

functions    u.  ,  v.  , w,    leads to 
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s v K ' h 1 

l-v 1-v 

2 iaiCyi2J,|2-
CT712ai^o±qlaia2 

C / 1 u v 
-   aa   — (e. + vej   — w,f  

P, Va,      sl     p, / 

c    l-v 
o^g 712 1 ^ P1     2     ie? \a2     -2     p2 \a„     52     pnl 

+  -{«2D(Kl + v/<2)j       "-D^+vK^a^^ 
h    pl 

+   —   a   D(l-v) /<1P +—D(1-V)K   a., 
P^   1 12)'i2    Pj 12 lfh 

d^2 

ff  6v   -{«iC^ + vc^j^   + c(ei + v62) a^^ JJ    5v 

s 

l-v 
! a« c — 7 

12    , 

l-v 
- c — 7,0 a, 

5l 2 
12 ^Ij "^l^ 

(Cont'd) 

76 



\ 

C /I v   v 

1 2 P2 
2 l  ^2 h    P2 / 

C l-v /I u \ 
12p2 2 ^VOj       61       pj 

1 1 
+  —  a. DOC« + VK.) - — D(K   + VK2) aj , 

D.          1 2 1          'U          Po 2       "2 

1   ( 1 

+   _   a   D(1-V)K12 ^-Dd-v)^^,!. 
P2 i ^x     Pg 1 

+ y/5w ~ K^i*^ M "D('<2+vKi)a2,61 

la2 I 62 

+ {a2D(l.v)K12} ^   + D(l-v) K12a2>6i  j  ^ 

+    0^ D(l-V) <l2 + D(l-V)  K12 
5« 

+   ala2 

CCej + ve2) C(£2 •»• yc^ 
+ aia2 

hcK-€2)(^lei.^)|^ 

al C^e2 + Ve 
(Cont'd) 

77 



i 1-v /   1 u \ 

I  1       2     12\a,      h     p, /  ' P^M^ 

KCT7^W'^)U 
-   (a^)       +(aiq2) ±   -P + q5   «^ 

S, 
d^dlg 

^ 
5u 

ÖS 

1-V 
C(e1 + v€2) a2d|2 + c — ?i2aid|i 

D                                D 
— (l-v) Kl2aidt1 (Ki + VK2) a2dl2 
Hl 

+     ^    6v 

ÖS 

l-v 
c(€2 + ve1) oc1di1 + c — r^dlg 

D D 
— (Kg + VK1) a^^ - — (l-v) K^dlg 

/• f/ M        M     \ 

ÖS n 

M        M r /           M        M     \ 

hS s 

"f 5w      C(c     + Vep)(— 8w         - —) 
i [i     1       2 ^j      ^1    p^ 

+     '/'     5w 

ÖS 

(l-v) 
+    C   7 

Ml 
12 (aT1"^"^) ) a2d|2 

(Cont'd) 

78 



( /  1 v v 1-v / 1 u v | 
+ jC(€2 + vei)(       w,|2 |+CT7l2(--w,6i.-j)aA 

aia2 

a2 D(/<1 + VK:2)      ^    - D(K2 + vKj) a2 ^ 

+ {^0(1^)^2! + D(l-v) K^ a2dl2 

ala2 

a. D(K:0 + VK. ) - D^T + vO a 1    v 2 v\n 

+ ja2D(X-v)K12|^   + D(l-v) ^^^ 

2y ^l,t 

V1! 

t t I 1 j 

+     y      — 5w,,      DCKj + VK2) a2dl2 + D(l-v) ^«i^i 
ÖS 

1 

a,       M 

+   — 6w,5    D(/<2 + v'<1) ajdlj + D(l-v) K12a2d6g 1 

+    — 5w,t    M a d| 
~ 5      n s    s a "n n 

s    0 (87) 

The potential  term involving  the twisting moment    M      has been Integrated 

by parts once with respect to the circumferential coordinates    S    .    The 

contour Is assumed to be smooth;   if the contour contains singularities 

(corners),  the integration by parts also gives rise to terms that are 

the product of a variation in the lateral displacement    w    and a con- 

centrated generalized force ("corner reaction").     It is well known that 

this  identity implies  that each of the integrals must vanish Identically. 
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As the variations 5u , 5v , and 5w are completely arbitrary within 

the domain of integration S , the condition 51 = 0 leads to the 

following set of Euler equations and boundary conditions. Appropriate 

quantities have to be assigned a subscript 1 or 2 . Where a double 

sign appears, the top sign is to be used in connection with the sub- 

script 1 ; the lower, with the subscript 2 .  In S , then, 
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The three Euler equations for the variations    5u ,   6v , and    5w 

(8öa,b,c) are recognised as the equilibrium equations for components 

of forces in the three coordinate directions.    The last Euler equation 

has been rewritten, using the first two. 

The four sets of boundary conditions  (89a,b,c,d) are obtained from the 

boundary integrals by use of suitable transformations from the    l-i;£p 

coordinate system into the    I ,i      system.    The transformation symbols 
8       il 
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APPENDIX II 

THE GOVERNING EQUATIONS FOR A CORE MODEL 

The analysis of the "ore Is based on the assumption that the Inplane 

shear stiffness anu *vt«nslonal stiffness of the core are negligible 

with respect to the transverse shear and extenslonal stiffness quanti- 

ties. 

Further, If the rotation about the normal to the 1-2 coordinate surface 

Is considered to be much smaller than the rotation about tangents to 

the same surface (consistent with the assumption made for the face 

sheets), then the essential strain-displacement relations reduce to 

?15 = u^ 't\i+^Vf^ (91a) 

^3  =  ^-^%i+^-n2 
(91b) 

For a core with a cell structure consisting of walls perpendicular to 

the £ = 0 coordinate surface, the last two terms In the expression 

for the transverse strain correspond to rotation of cell walls out of 

their planes. If the squares of these rotations are not negligible with 

respect to the linear term w,^  , then the effects of the stresses 

and strains in the cell walls, that correspond to a state of plane 

stress and are neglected a priori, would certainly have to be retained 

In the equilibrium equations. 

Consistent with the Initial neglect, therefore, the strain-displacement 

relations of the core are linearized; that Is, the underlined terms In 

Equation (91c) are omitted. 
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For a core of cell structure,  the appropriate stiffness quantities are 

FCOa^g   =   F(o)a1a2   s  R^äg 

Gl^)a2    =    Gl(0)52      5   Gia2 

GgCO«!    =    GgCo)^      =   Gg^ (92) 

The strain energy of the core is 

ffI^^*h\hVy%+\*S)y\, c^Ogd^dggd^     (95) 

and the potential of the applied loads Is 

jJVu-f + q2v + q5w) a^g 
c/2 4iC,f   * 

, d*id|2 - rJ q ^^s-^ 
-c/2 

S      8 

öS -c/2 

The total potential of the core Is 
w 

T      =    U    + V„ c c        c (95) 

For a stationary character of the total potential,  the first variation 

must vanish Identically; thus, 

5T =   fff^y (a^Vtf)^ " GiVl3al,C 
R 

dl^lgdC 

+   fff ^V ^Wz)     " G
2<V25a2,CJ 

R & 

d^dlgd^ 

JfJ 5w [- Ftt^g w,^   -  (G^gr^ 
R 

.    "  (G2al^),e 51 fig 
dl^lgd^ 
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// 
s 

// 
s 

// 

a. 
6u * ala2 )G1 7 y13 " ql 

5V * aia2 ! G2 ^25 "q2| 

:/2 

J C-c/2 

C-c/2 

c/2 

d^dl. 

dl^Sg 

5w • a.öp i F — w,rq did* 

c/2 

öS    -c/2 

Gl "f ^15a2d|2 + G2 ^ ^23  ' «1«! -'V8. 
"2 al 

d^ 

(96) 

As the variations    8u ,  5v ,  and    6w   are arbitrary everywhere Inside 

the domain of Integration and In the Interfaces,  the following Euler 

equations and boundary conditions result: 

(ViVi?)    + GlVl3al,5 a. 
(^\f 

(a2G25l723)^ + Gf^ct^   =   -& Ca|725)^ 

=    0 

=    0 

(inR) 

W^ + 

12 Sl S2J 
=   0 (97) 

a2 
Gl   -   715   =    ql 

U2 

ai 
G2    "    723    =    q2 

"l 

(m s , 5 - ± c/2) 

(98) 
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aia2 

Gl   7   715a2d52 + G2   ^   W1!    =    ■ q*a.d .     0r      6W = 0 
a2 al 

(on    hS ,   |C| <c/2)      (99) 

The Euler equations can be Integrated.    The first two equations yield 

r^ii^ii)   -   rl3(o)Q^(o)   =   r^ 

723(i)o%(i)   -   723(o)a§(o)   =   -/2^ 

Further,  as   a (^) ■ a (0)(l + t/p.)    , these results can be written as 

715(0    -    7!  (1  - JS/Pj) + 0(C2/P^) 

723(C)  ■  rg (i - at/pg) ♦ oa2/p2) (loo) 

The shear-stress distribution across the thickness of the core model Is 

completely determined by the equilibrium equations. 

The last Euler equation can be Integrated twice with respect to   t,    . 

With the use of Equation (100),  there results 

^ivlptt)  • ( -zrr (Vi5     + ) "^ (ai72) 
1    2 VjPj      2/FäQ       2 1 '6      \3P2      2/Föa       ^'i 2 

+    fU^lg) C+hd^lg) 
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.2,2 
Ten» of the order f, /p. have consistently been neglected with respect 

to unity. 

The two functions f((.,(p) and hU.,1 ) can be determined by making 

use of the "boundary conditions" 

wUx»^'6/^ = Wl 

wClj, i2, -c/2) ■ "2 
(101) 

These relations actually express continuity of the lateral displacement 

v of the interfaces, as the lateral strain in the faces is neglected. 

By use of Equation (101), there results 

«Uvl2,t.) 
Vl * V2 + 

Wl " W2 . 

8       UPj      2      JPj 

8     12P2    2      5P2 J 
^r (V2' 
"Vl     '«2 

and, consequently. 

"s 
c ^        pi      12pi '  ^^s 

(Vi), 
tl 

(108) 

.2        c2 
/        "        C      \     G2     ,- 

\       p      I2p   / Föa * '! 
(103) 
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From the strain displacement relations  (Equations  (91a) and  (91b)),   It 

Is seen that 

1   ai i 

2    2 

Integration of these relations with respect to   (;    , making use of pre* 

vlous results and the continuity conditions, 

c tl   / 1 ul\ 

v(l1>l2,|)    =    v, 1 + ^   (o, "»''S " pj 

2   \an   2»l2    p«/ 

results in two compatibility conditions In terms of the components of 

the fee« 

namely, 

the face displacements and the core shear functions    7.    and    y      ; 

M1 1" M1 + — ) + ~Wl I 
c + t.      c    + Jt.c 

2 6p. 

1 r c + tp     c    + 5t c 
+ ~ w2 t        +  al      ' ^ I      2 6pl 

7ic 

12FÜ, 

G G 

aia2 'h    a2ai ,62J,i 

89 

=   0    (105) 



vi(1-i)-V2(l+i)+iw'. 2p2/ 0L2     ^2 

C + t.    C  + JtjC 

2       6p0 

a2 
2'62 

r c + t  c + 3t c 
 £ + £_ 

2       6p0 
72c 

12FÖ, 

Gl  - GP  - 

aia2      ,gl  a2al      '^M, 

0  (106) 

The boundary conditions (Equation (98)) allow elimination of the inter- 

face loads q. , q ? and q, from the Euler equations of the faces; 

then by use of Equations (100) and (103), resulting from integration 

of the equilibrium equations of the core, the only unknown functions 

remaining are the six face displacement components and the two core 

shear functions. Each of these eight functions depends on the surface 

coordinates |. and |_ only. 

In addition to these six equilibrium equations for the faces, the two 

compatibility conditions (Equations (105) and (106)) have to be satisfied 

to guarantee a unique solution. The last boundary condition for the core, 

Equation (99), also has to be satisfied in addition to the eight boundary 

conditions obtained for the two faceplates. 

If it is assumed that the boundary load q  is distributed over the 

depth of the core in the same way as the internal shear stresses, 

q*(0  =  q*(0) (1 -2^/pn)  ^ q*(l - 2^/pn) 

then the ninth boundary condition can be written in final form as 

- * 

VlC21 + V2C11 + <1   = 0   0r 
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■ 

M^Ki^ir) 
c  Gi -     S - 
6F (aa  2 1 'Ij  a a  1 1 'I 

= 0 (107) 

According to Salnt-Venant's principle, replacement of the actual boundary 

load 

c/2 

/ 
-c/2 

q (5) a8d? 

-* 
by the statically equivalent load q ca  will affect the stress dls- 

S 

trlbutlon In a limited edge zone;  It also affects the plane-stress 

components.    However, as these stresses have been Ignored In the 

present theory. Equation (107)  Is the appropriate boundary condition 

of the core.    If the plane-stress components are Important,  then a 

more complete treatment of the core requires consideration of other 

than shear loads at the boundary. 
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APPENDIX III 

BUCKLING EQUATIONS FOR AN AXIALLY COMPRESSED CIRCULAR 
 CYLINDRICAL SANDWICH CONSTRUCTION  

For an axially loaded cylinder, the shallow-shell equations can be used 

with great confidence to determine buckling or postbuckllng behavior. 

The following substitutions are made in order to specialize Equations 

(19) and (20) for this case (see Figure 5). For the reference surface, 

61 = x  al = 1    pl = " = pn 

S2 = cp  a0 = R = p0 = pe 

For face 1 (outer face): 

Q^ = 1   P1    =   <* 

a2 = Rl = p2 

(108) 

For face 2 (Inner face): 

al ' 1   pl = ^ 

a2 = R2 = p2 

At the boundary, x = 0 : 

6 = - ffi   a=R. =p     d=-v   N=-N    M=-M 
8Tsl8       S SCpScp 

i    =   x a=lp=oo   d=u    N=N     M=M n        n     n       n n   x     n   x 
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Cll = 0 = C22    T = 0     Nz = \ 

C12sl=-  C21 

dll = 0 = d22 

d12=-l=-d21 (109) 

At the boundary, x = L : 

^ <p a   = R. = p 8            1        K8 
d    = v 

8 
N    = N 8           cp M8   =  MCp 

*n- X "r,   =    1       P«   =  ^ n              n d    = - u n N    = - N 
n           x 

Mn=.] 

cir 0"c22 
T  =   0 N    =  - N„ 

C12 = ■1 - -c81 

dll= O-dgg 

dir ! = - Si (UO) 

Compatibility conditions: 

u1 - u2 - C71 + 
12F Vl,x + Vs,^ 

c + t       c + ^ 
+ i w,  +  * w-   =0 

0    M     o    2»x 
(Ilia) 
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M'-iM^H'i |v.,x+v^ »<p 

\      2 6R /    ^ 

ic + t^     c    + 5t2c 

(• 6R 
(111b) 

Equilibrium equations for faces 1 and 2 

V^l + VG2\x + S^ 'I2,cp * Vl f ^)   "    0 

Cl(£2 + ^l^q, + Cl T" 712^ T V2 I1 ^ )    =    0 ' 

Dl^l + V^K* + Dl(l-V) K12,<t +    Dl(/<2 + *lKv + Dl(l-V) K12,: 
J ^x      l 

/ 1   V 1-V 

- Cl(el + Ve2 *! " Cl(e2 + ^ [K2 • 7)- 2Ci ~ 712K12 

\ 2R/ I        c 2      F     1'X      2 \        3R'     F     2'Cp 

.9 

W(1Ti)v^+(lTiK' =   0 (llle) 

Boundary conditions at    x = 0,L    : 

Ci(G1   +   VGg)    "   Nxi      =       0 0r bUi   =   0 (112a) 

• 
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1-v 

2 
Cl    ~   712-Ncpl    "    0        0r        6vi = 0 (112b) 

■ V£i + v«a) ^x-^ Y r12% - -^ GI7I (i ^)* N5 - M^^ 

■ ^^l + ^2^ * 2D1(1-V) Kl2,<t    =    0        0r        &W1 = 0 (112c) 

- DJ^CKJ + \*<2) - M .    =    0       or       5wi (112d) 

— * 
- cG.y. + q        =0        or 

'^■^M^iKK^ x + V2^| =    0        (I12e) 

Under the shallow-shell assumptions,  the strains and changes of the 

curvature are simply 

.  1      2 e,    =    e     =u.    +öw. 1 x    •     'x     2      'x 

. w ^ 1      2 
e2   =:    €cp   =    % + R + 2   % 

>,_    =   7       =    u.    + v,    + w, w, 
'12 xcp 'cp        'x        'x 'cp 

K.      =     K.        =     W, 
'XX 

(115) 

Kn     =     K        =     W, 
2 cp 'cpcp 

12 xcp 'xcp 
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If it Is assumed that the cylinder deforms uniformly under a uniformly 

applied axial compresslve load up to a critical value of the load (that 

Is, no edge loads are present other than the compresslve force   N .  ), 

then the subcrltlcal state of deformation Is characterized by the uni- 

form lateral displacements    w.    and   w. the absence of shear deforma- 

tions    71    and   j0   of the core, and the circumferential displacements 

and Also,  In the present notation,  the changes of curvature 

as well as derivatives In the cp-dlrectlon are zero. 

From (Ilia) then.  It follows that   u. = u. = u      , Equations (lllb,d) 

and the boundary conditions  (I12b,c,d,e) are satisfied Identically. 

Equations (111c) and the boundary conditions (112a) show that 

Nxl    =    C^+v^g)    =    0 

while Equation (llle) becomes 

■K-?) (UM 

c. r    * w. 
-1 

1 1 * 

Rl 

vu'x 

r    * 

fa ^ + VU'x 
«2 w X 1 

+ F (■•i)1 IS   - 

(■•i)- 
Subcrltlcal deformations are marked by an asterisk. 

= 0 

= 0 (115) 

Multiplication of the first of Equation (115) by ^ and of the second 

by R. shows, after addition of the two results, that the total cir- 

cumferential force vanishes; that Is, 

!^ ^1+c4J+<) -o 
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■ 

^ 

Finally, solution of Equations (llU) and (115) yields 

N . = u. C xl X  1 (l-v2). 

:/R 

1 + 

1 + -^ (1 - c/2R) + -^ (1 + c/2R) 
FR 

No = u.  C x2 x 2 (-v2) 

:/R 

C C c 
1 + — (1 + c/2R) + -ir (1 - c/2R) 

CÄ FR 

(116) 

This determines the ratio of N . and N _ necessary to achieve a 

uniform prebuckling deformation. 

For a thin shell c/R « 1 and, in this case, neglecting terms of the 

order c/R gives 

N . = u,  C.(l-v ) xi    'x iv   ' (117) 

Poisson's ratio has been taken to be the same for both faces. For 

simplicity, attention may be restricted to the case of completely 

similar facings, (Et). = (Et)  . Then, simply, 

N . = N _ = - N xl     x2      x (118) 

If the prebuckling deformations are subtracted from the total deforma- 

tions and the buckling deformations so obtained are substituted into 

the strain and curvature expressions (Equation (113)), Equations (ill) 

and (112) describe the postbuckling behavior of the thin sandwich shell 

under the assumptions made. 

For a determination of the critical load, products of buckling strains 

and/or stresses can be omitted and the "buckling equations" for a thin 
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sandwich cylinder with similar facings are obtained as: 

/        w vi        (i-v; 
u,      + V lv.      + "^ I        +C   

/       w2 \l        (i-v; 
2'X \2^       R/J,x 2 

l,<p        l,x 
.cp 

- G^j = 0    (119a) 

U2,cp + V2,xJ^ + Vl = 0    f11^) 

w. (l-v) 
v,      +   —    + vun + C   
^        R 1'X   J,cp 2 l,cp        l,xj   , G272 = 0    (119c) 

2,cp        „ 2,x 
(l-v) 

+ C   
,cp 2 

U2,cp + V2,x] ^ + Go7o = 0    (119d) 
2^2 

DV w1   - - 
2 Vl,x + V2,cp + F 

Wl-W2       C 

" - ^ Vl,x + V2,cp) 2F 

c 
+ - 

R 

w. 
v.      + — + vu, 

l,cp      B l,x + NxWl,xx=0    (W) 

k DV w^ G,7,       + G_7_ 
w    - wp        c 

c 
+ - 

R 2,cp       R       " 2,x 
NxW2,xx=0    Cll9f) 

t + c 
U2 + ^1 + W2\x " 71C + ~ (Vl,x + V^cp^x   = 0    (1198) 

t + c 

12F 

,5 

V2 + ^1 + W2),cp ■ V + — (Vl,x " ^2^^    = 0    (ll9h) 12F 

Appropriate boundary conditions for the problem under consideration are 

to be chosen from the following set of pairs: 
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At x = 0,1- : 

"M + v(vl,cp + Wl/Rl) = 0  or   u- = 0 (120«) 

U2,x + v(v2,(p + W2/R2) = 0  or   u_ = 0 (120b) 

(l-v) 
U,   + V, l,<p  l,x = 0  or   v. = 0 (120c) 

(i-v) 

2,cp   2,x 0  or   v2 = 0 (120d) 

■j 

D w,    + (2-v) w,     - 7 G,7, - N w.   =0   or   w. = 0 (120e) l,xxx  v  ' l,(pcpx   2 11   x l,x 1    N 

D W2,xxx + (2-v) W2,cp(px I Vl " NxW2,x - 0   0r   W2 = 0 (120f) 

w, _ + VW, l,xx    l,(pcp = 0  or   w1>x = 0 (1208) 

w« ^ + vw „ 0  or   w2x = 0 (I20h) 

CG l7l » 0   or   w1 + w2 + ^ (GI7M + Gl7l^) = 0    (1201) 
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APPENDIX IV 

EXPRESSIONS FOR CRITICAL LOADS  IN THE PLASTIC RANGE 

The loss of stability of a sandwich cylinder under uniform axial com- 

pression may occur at stress levels beyond the elastic limit.    In this 

case, the change in strain energy due to a small perturbation of the 

prestressed state has to be determined, taking into account the sign 

of the changes in strain.    Stress increments and decrements are re- 

lated to changes in strains by different laws.    This results in modi- 

fled expressions for the bending stiffness and extensional stiffness 

of the faceplates and presumably also for the core stiffness. 

For the behavior of the faceplates under a prestress beyond the elastic 

limit, the following generalization of Hooka's law is used: 

%   =   7-* (8€<p + ^ 6£x) 

where E = E or E  and u ■ v or p, according as a stress inten- 

sity decreases or Increases. E and E  are Young's modulus and the 

tangent modulus as obtained from a uniaxial stress-strain curve (pos- 

sibly In a tensile test), and v and n *re Poisson's ratios for the 

elastic and the Inelastic range; plastic deformations are assumed to be 

volume preserving (n = 1/2) . The stress intensity 0- is defined here 

as the square root of the second invariant of the stress deviator ten- 

sor J. . In the case of the usual plane stress approximation for 

face sheets. 

= -V/JT =   (cT + a - a o- + j-r ) 8 ,1/2 

V? cp   x cp   xqr 

100 



so 

5(T    =    — 
6(7 

(er    - er )   (5o-    - 5er ) + 6T    5T v  x        cp x cp' xcp   xcp 

For a perfect cylinder in the prebuckled state,    cr    = T      ^ 0 
cp        xcp 

5o- 
er (8cr    - So" ) 

x      x g/ 

2    (T xlvT 

Hence, 

(12?; 

SYMMETRIC WRINKLING MODE 

For this mode, w. = - Wp , while the other displacement components and 

the core shear angle are essentially zero. The only perturbations of 

the prestralned state are a bending strain component 5e = - zw,   and 

a circumferential strain component be    =  w/R . Then, 

60- =  (Be - be  ) 
2 (1 + /) VT   

X    ^ 

But 

|8€ I / |5c I = 1 x1 ' ' cp1 
2z   RtTT 

t  2X 

2z 

t 
ß2/vr » 1 

except near the middle surface (z = 0) , so the sign of So* is the 

opposite of the sign of 5c and the face bending stiffness is taken 

as 

D  ^ E  ^ (123) 

— # 
where the reduced modulus    E      is  the well known double modulus: 

iv-2 
- # 
E 

(l-v2 + l-Z/VVl-v2 + VlV 
hE E. 

(VE + v^y 
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According to Equation  (kO),   the wrinkling load  is determined by 

2 * 5 er tc 2F c 
k = ^h~ ^ ß2 + //ß2 = ß2 + TTT (i2M 

7T   D 7T   D  ß 

■X- 

In this expression,  F  is a reduced core modulus, As the core is 

assumed to be stress-free up to the point of instability,  F  should 

be equal to the elastic value F . Actually, the core is attached 

to the faces, and the outer core layers will undergo the same inplane 

strains as face layers that are strained beyond their elastic limit. 

In addition, buckling of cell walls may be a source of deterioration 

of the core stiffness. 

An upper limit for the wrinkling stress is found by taking F = F ; 
■x-    — — 

a low value results if it is assumed that F = F«Et/E .  In both 

cases, both D  and  F  are completely determined by the face stress 

er  and will be stationary if cr  reaches an extreme value. Hence, 

a critical situation prevails, similar to the elastic case. If 

ß = (qi ) '   ; the corresponding critical load parameter is 

Kr) = ^V7 
wr 

On the basis of the two extreme assumptions regarding the magnitude of 

F  , the critical stress is assumed to be bounded by 

2 - /^ F i! 2 VUFlE ' 
'JC      -',  < ^x <   -?C  --f (125) 

/ E + V E E + , E 

CLASSICAL MODE 

The classical mode of instability Is characterized by a negligible trans- 

verse strain and a wavelength that is several times the core thickness. 

The ratio of bending strains and neutral surface strains Is very snuill 

for the face layers. 
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The essential changes In the state of strain are 

5e      =    u,      =    - U TT/X sin TT'x/X        and 

6e      =    w/R    =    W/R sin 7r«x/X 

Hence, 

5cr.    =     ~  
1 2(1+ M*) -\/T 

v. X wi" 7TX 
1 + — sin — 

X 7TR u, X 1J 

Now as W. « Wp , but U, « - ü_ , the term In front of the square 

bracket and the second term between the brackets have a different sign 

for the two face layers. Then the sign of 5c ff will also differ 

for the two faces If 

X  W, 
_ -i < i 
TTR IT 

This condition Is met In most practical cases, and then 5cr will have 

opposite signs In the two face layers. The buckling criterion for the 

classical mode, according to Equation (kk),  can be written as 

N 

* 2 
Ds TT r      * 

y r/Et 
2 X + / 

* 2 1 
D 

!     ,                       S 
TT w 

G*(c + t)7c X' 

* v T .2 

27T 

(126) 

and the appropriate expressions for the reduced bending and hoop stiff- 

nesses of the sandwich shell are 

E E. 

E + E. 
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and 

* -. 
E t 

R 

E t E + E   t 

If two bounds for the core shear stiffness are chosen as 

Gi 7 < Gi " Gi 

then all stiffness values are stationary whenever the value of the load 

N  Is stationary and bounds for the classical buckling stress are ob- 

tained as 

c + t /E + E 

E + E 

 1 

- E Et - 
ct  E + E. 

2R2 E + E. 

E2 

. — < a 

c + t /E + E £ ii 
E + E. 

ct  E -!• E  E E 

t  2R2 E + E   G. 
(12?) 

ANTISYMMETRIC WRINKLING 

Although, In general, the critical stress for elastic antisymmetric 

wrinkling Is shown to be larger than the elastic symmetric wrinkling 

stress, the antisymmetric result depends on both F and G , while 

the symmetric result is Independent of G . Hence, if both quanti- 

ties are affected by plastic deformations, the ratio of symmetric and 

antisymmetric wrinkling stresses will change.  In the antisymmetric- 

mode, face bending strains are usually larger than face neutral sur- 

face strains. If, again, upper and lower bounds for the core stiffness 

quantities are assumed in the form 

^ (F,G) < F , G  < F, G 
E 
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then all stiffness quantities assume stationary values at the critical 

value of the stress.  Equation (V?) can be written in the form 

c + t '6F D 12  F D 
Nx = 2 

c2t 
*• (128) 

and the antisymmetric wrinkling stress is assumed  to be bounded by 

2(c + t)    Y~ F E^        IM:2     F 

-\lEWEt   c   G] 

E E. 

-J E + -j E, v    t 

-   <    ex 
2 x 

2(c + t)    Y!^ F EEt tc 

E +   ^ E c       G. 

E E. 

1 + ^"Et 

(129) 

It must be noted that the prevalence of face bending strain over face 

stretching is  less pronounced in the antisymmetric wrinkling mode than 

it is in the general Instability mode.     If the two types of strain be- 

came of comparable magnitude,  the change in the stress intensity is a 

more complicated function of the coordinates and a more complete study 

of the inelastic behavior is mandatory. 
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